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A Gaussian Process based method for detecting and correcting dropout in diffusion imaging. 
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PURPOSE 
Signal dropout caused by coherent movement (subject or pulsatile movement) during the diffusion encoding is a problem for diffusion imaging. Any 
component of the movement that is co-linear with the diffusion gradient will lead 
to dropout, the magnitude of which will depend on factors such as phase-encode 
band width and if/how partial k-space acquisition is performed. These dropouts will 
typically affect a whole slice (in the case of subject movement) or a substantial part 
of the brain (for pulsatile effects) [1]. The consequence for modeling/tractography 
is that the dropout will be interpreted as high diffusivity along the direction of the 
diffusion gradient for the slice with dropout. Specifically for pulsatile effects this 
can cause a systematic overestimation of the diffusivity along the direction of high 
tissue velocity in basal-medial regions and bias fibre orientation estimation. Our 
proposed method will detect outliers in a slice-by-slice basis and, instead of “just” 
rejecting it propose a data-driven replacement for the slice. 
METHODS 
We have recently developed a method (EDDY) for simultaneously 
correcting for eddy current-induced distortions and subject movements [2]. 
It is based on comparing a Gaussian Process based prediction of the data 
with the observed data in the native scanner space. The sum-of-squares of 
the observed difference drives the estimation of the distortion and 
movement parameters. If observation-minus-prediction has a negative non-
zero sum (across voxels) it is indicative of dropout being present in the 
observed data. Each slice of each diffusion weighted volume yields one 
such number which allows us to convert them to z-scores and build an 
empirical distribution of slice differences. The z-scores can be thresholded 
at an arbitrary level (4 in our examples) to define an outlier. The outlier 
slice can then be replaced by its prediction for the remaining iterations of EDDY and also for the generation of the final pre-processed data.     
RESULTS 
The method has proven to be very 
sensitive at detecting outliers. 
When “simulating dropout” by 
multiplying a slice by some 
number < 1 it has been able to 
reliably detect “whole slice” 
dropout of as little as 2%. The 
figure to the right shows examples 
of outliers that were detected and 
replaced in a dataset with 66 
slices and 300 volumes from the 
HCP project [3,4].    
DISCUSSION 
Unlike previous methods, such as 
RESTORE [5], our method 
considers a summary statistic from an entire slice when deciding if a point is an outlier or not. This 
means that we can achieve higher sensitivity than is possible when considering voxels in isolation. It 
also makes sense as the nature of the artifact means that it will affect whole slices or at least 
substantial parts of the brain in a given slice. This is possible because the comparison is performed in 
the space of the original acquisition, i.e. the observed slice has not been interpolated or processed in 
any other way. If instead the movement/distortion correction is performed prior to, and independent 
of, the outlier detection affected and unaffected voxels will be mixed through the interpolation 
leading to a loss of sensitivity. In addition a severe slice dropout can bias the estimation of 
movement/distortion. We therefore believe that it is important that the two corrections are 
incorporated into a framework that performs them simultaneously. 
Another novel aspect of our work is that it detects “outliers” using a non-parametric Gaussian 
Process framework rather than a specific model (e.g. the diffusion tensor). That means that it is data-
driven and not coupled to a specific model and can therefore represent the signal from voxels with 
complex fibre patterns whereas the diffusion model might instead “detect” outlier points as demonstrated in the figure above. As the outlier detection 
is not tied to fibre orientation estimation the method can provide corrected data useable by all HARDI approaches, for example parametric [6] and 
non-parametric [7], and single and multi-shell [8]. 
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Examples of detected outliers (top row, middle panel) and the replacement (bottom row). The graph shows that most 
outliers are detected in basal slices where the cardiac pulsation is greatest. The example on the left (from slice 29) is 

the exception and is probably due to subject movement. Note how in that case the intensity of the whole slice is 
affected, making it hard to see unless one compares it to the neighboring slices.

Data (red points) from a crossing fibre 
voxel and predictions (grey surface) for 

tensor (left) and Gaussian Process (right) 

Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 2567.


