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TARGET AUDIENCE Researchers and clinicians interested in accelerated high resolution DWI/DTI 

PURPOSE While high-resolution diffusion tensor imaging (DTI) is a powerful tool in scientific studies and clinical diagnosis, prolonged acquisition time has always 

been obstacles in its applications. Parallel imaging (PI) methods, such as conjugate gradient SENSE (CG-SENSE) [1], have long been applied to diffusion imaging, but 

their acceleration capability is limited by noise amplification and residual aliasing at high reduction factors. Some recent work has demonstrated great potential of 

compressed sensing (CS) based techniques, for example joint sparsity CS, in simulations or ex vivo studies [2]. In this work, a PI and CS combined framework is 

proposed, which addresses practical issues of motion error correction and PI calibration in high-resolution DTI, and utilizes inter-image correlation through anisotropic 

signals for improved sparsity. A specific implementation based on multi-shot variable density spiral (VDS) is used to demonstrate the method in in vivo DTI experiment.  
THEORY The proposed method consists of three steps, as illustrated in Fig. 1: 1) motion-induced phase error estimation, similar as introduced in [1]; 2) initial CS 

reconstruction, which provides data for calibration of PI kernel and estimation of isotropic signals; 3) final reconstruction combining PI and CS, as formulated by 

equation (1). The idea of SPIRiT [3] is adopted to combine PI and CS, which is compatible with arbitrary k-space trajectories. The general reconstruction formulation is: 
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METHOD The proposed method, titled as Anisotropic Sparsity-SPIRiT 

(AS-SPIRiT), was evaluated in a volunteer brain DTI experiment, and compared 

with CG-SENSE [1]. To demonstrate the benefit of anisotropy sparsity, the same 

PI-CS combined reconstruction framework integrated with other sparsity models 

was also implemented for comparison, including L1 and joint sparsity [2] 

regularized SPIRiT (L1-SPIRiT and JS-SPIRiT). The scan was performed on a 

Philips 3T system using an 8-channel head coil and multi-shot VDS sequence with 

α=4. Scan parameters: TR/TE=2500/65ms, FOV=220mm×220mm, b=800s/mm2, 

number of diffusion direction=6, image resolution=0.86mm×0.86mm, number of 

interleaves=26, NSA=4. Fully-sampled data were artificially under-sampled with an 

interleaved sampling pattern in the diffusion dimension. The averaged results with 

NSA=4 is used as gold standard.   

RESULTS AND DISCUSSION Representative FA maps reconstructed at R = 3 are 

compared in Fig. 2. The FA maps reconstructed by CG-SENSE are severely 

degraded by noise. SNR is improved in the results of the PI-CS combined methods. 

However, in areas of low FA, as pointed by the arrows in Fig. 2, false directionality 

and increased anisotropy appears in the results of L1-SPIRiT and JS-SPIRiT. This 

error is largely eliminated in the results of AS-SPIRiT. The accuracy of 

reconstructed FA maps is compared quantitively in Fig. 3, which displays whole 

brain FA error histograms of the above methods at R = 3 and 5. AS regularized 

reconstruction has an error distribution with the mean value closest to zero and the 

smallest standard deviation at both reduction factors, which means it has the least 

bias in FA maps. RMSE of reconstructed FA maps, summarized in Table. 1, also 

demonstrates that AS yields FA maps with highest fidelity. The above results shows 

that AS utilizes the inter-image correlation of diffusion weighted images in a highly 

efficient way by exploiting the sparse anisotropic signals. 

CONCLUSION The proposed AS regularized reconstruction can accelerate 

high-resolution DTI acquisition with high fidelity by effectively combining PI and 

CS, and utilizing the correlation among different diffusion encoding directions.  

  

Fig 3. Histograms of FA error at R=3(top row) and 5(bottom row), with mean FA 
error ± two standard deviations labelled.  
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Fig 2. Representative FA and color-coded FA maps at R=3. The yellow and 
red arrows point out where false directionality appears in the FA maps.  
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Table 1. RMSE of FA maps at R = 3, 4, 5  

 CG-SENSE L1-SPIRiT JS-SPIRiT AS-SPIRiT 

R = 3 0.1518 0.0947 0.0880 0.0824 
R = 4 0.1728 0.1265 0.1229 0.0943 
R = 5 0.1656 0.1340 0.1226 0.1088 
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Fig 1. Block scheme of the proposed PI-CS combined reconstruction framework. 
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