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TARGET AUDIENCE Researchers and clinicians interested in accelerated high resolution DWI/DTI

PURPOSE While high-resolution diffusion tensor imaging (DTI) is a powerful tool in scientific studies and clinical diagnosis, prolonged acquisition time has always
been obstacles in its applications. Parallel imaging (PI) methods, such as conjugate gradient SENSE (CG-SENSE) [1], have long been applied to diffusion imaging, but
their acceleration capability is limited by noise amplification and residual aliasing at high reduction factors. Some recent work has demonstrated great potential of
compressed sensing (CS) based techniques, for example joint sparsity CS, in simulations or ex vivo studies [2]. In this work, a PI and CS combined framework is
proposed, which addresses practical issues of motion error correction and PI calibration in high-resolution DTI, and utilizes inter-image correlation through anisotropic
signals for improved sparsity. A specific implementation based on multi-shot variable density spiral (VDS) is used to demonstrate the method in in vivo DTI experiment.
THEORY The proposed method consists of three steps, as illustrated in Fig. I: 1) motion-induced phase error estimation, similar as introduced in [1]; 2) initial CS
reconstruction, which provides data for calibration of PI kernel and estimation of isotropic signals; 3) final reconstruction combining PI and CS, as formulated by
equation (1). The idea of SPIRIT [3] is adopted to combine PI and CS, which is compatible with arbitrary k-space trajectories. The general reconstruction formulation is:
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the weight for the CS regularization. R(m,_, ) is the CS regularization term, and here both intra and inter image correlation is utilized by an anisotropic sparsity model,

which further sparsifies diffusion weighted images by removing the isotropic signals VW:I/LZ'm’ . The anisotropic sparsity regularization is formulated
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METHOD The proposed method, titled as Anisotropic Sparsity-SPIRIiT

(AS-SPIRiT), was evaluated in a volunteer brain DTI experiment, and compared
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with CG-SENSE [1]. To demonstrate the benefit of anisotropy sparsity, the same k-\s/;?asce 2 reco:;?ijlclion
PI-CS combined reconstruction framework integrated with other sparsity models \\% i ‘ Initial Kernel
was also implemented for comparison, including L1 and joint sparsity [2] | 'meconstiucion caliration
regularized SPIRIT (L1-SPIRiT and JS-SPIRiT). The scan was performed on a
Philips 3T system using an 8-channel head coil and multi-shot VDS sequence with Fig 1. Block scheme of the proposed PI-CS combined reconstruction framework.

a=4. Scan parameters: TR/TE=2500/65ms, FOV=220mmx220mm, b=800s/mm2,

number of diffusion direction=6, image resolution=0.86mmx0.86mm, number of Reference  CG-SENSE  L1-SPIRIT  JS-SPIRIiT  AS-SPIRIT

interleaves=26, NSA=4. Fully-sampled data were artificially under-sampled with an
interleaved sampling pattern in the diffusion dimension. The averaged results with
NSA=4 is used as gold standard.

RESULTS AND DISCUSSION Representative FA maps reconstructed at R = 3 are
compared in Fig. 2. The FA maps reconstructed by CG-SENSE are severely
degraded by noise. SNR is improved in the results of the PI-CS combined methods.
However, in areas of low FA, as pointed by the arrows in Fig. 2, false directionality
and increased anisotropy appears in the results of L1-SPIRiT and JS-SPIRiT. This
error is largely eliminated in the results of AS-SPIRIT. The accuracy of

reconstructed FA maps is compared quantitively in Fig. 3, which displays whole Fig 2. Representative FA and color-coded FA maps at R=3. The yellow and

brain FA error histograms of the above methods at R = 3 and 5. AS regularized red arrows point out where false directionality appears in the FA maps.

reconstruction has an error distribution with the mean value closest to zero and the

smallest standard deviation at both reduction factors, which means it has the least CG-SENSE L1-SPIRIiT JS-SPIRIT AS-SPIRIT
bias in FA maps. RMSE of reconstructed FA maps, summarized in Table. 1, also w| | -0.034+0.167 wo| | -0.012:+0.110 w  -0.005+0.104 wo | -0.002:+0.098
demonstrates that AS yields FA maps with highest fidelity. The above results shows g * 8% 8% 2%
that AS utilizes the inter-image correlation of diffusion weighted images in a highly g g™ g 3"
efficient way by exploiting the sparse anisotropic signals. m: - - -
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CG-SENSE L1-SPIRIiT JS-SPIRIiT  AS-SPIRIiT T ‘ " T "

R=3 01518 0.0947 0.0880 0.0824 T T ear T ear T e

R=4 0.1728 0.1265 0.1229 0.0943 Fig 3. Histograms of FA error at R=3(top row) and 5(bottom row), with mean FA

R=5 0.1656 0.1340 0.1226 0.1088 error + two standard deviations labelled.

Table 1. RMSE of FAmaps atR =3,4,5
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