
Figure 1: Representative simulation results. The true temporal 
profiles for the three velocity components (ݒ௫, ,௬ݒ  ௭) are shown inݒ
dashed black line, and the reconstructed profiles are shown in solid 
red line. Profile for the background phase (ݒ௕) is not shown. (a) 
Recently proposed DiR method (Eq. 1). (b) The proposed adaptive 
implementation, DiRa (Eq. 2).  
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Target Audience: Researchers and practitioners interested in developing methods to improve accuracy of blood flow measurement using PC-MRI.  

Purpose: Balanced four-point encoding (BFPE)1 is a commonly employed encoding strategy for 4D PC-MRI. Recently, we proposed a method, called direct 
reconstruction (DiR), which overcomes some of the limitations of standard sliding window approach. DiR is based on solving an underdetermined set of equations via 
regularized least-squares. Being a linear method, DiR treats all velocity components equally, i.e., it assigns equal bandwidth to each component even when the true 
frequency contents of the components are widely different from each other. Therefore, in DiR, the assigned bandwidth (BWa) for each component cannot exceed 1/4th 
the total bandwidth (BWt), which is determined by the temporal sampling frequency. To overcome this limitation, here, we provide an adaptive formulation of DiR, 
called adaptive DiR (DiRa), where the BWa of each velocity component is adapted based on a current estimate of its temporal frequency contents. This setup allows 
components with more signal energy in the high-pass region to have higher BWa, leading to improved temporal resolution and reduced artifacts.  

Methods: The recently proposed DiR method can be mathematically written as: ߶෠஽௜ோ ൌ ሺܤ்ܤ ൅  represents all ܰ noisy measurements ߠ where ,(Eq. 1) ߠ்ܤሻିଵ்ܴܴߣ
across time, ܤ is a ܰ ൈ 4ܰ underdetermined matrix that represents the forward model, ܴ is a high-pass filter that provides stability to the underdetermined system of 
equations, ߣ controls the extent of regularization, and ߶෠஽௜ோ is a 4ܰ ൈ 1 vector that represents an estimate of the true unknown phase ߶. In contrast, the proposed DiRa 
is formulated as ߶෠஽௜ோ௔ ൌ argminఒ್,ఒೣ,ఒ೤,ఒ೥,థ ߠ‖	 െ ଶଶ‖߶ܤ ൅ ௕ߣ ‖ܴ௕߶‖ଶଶ ൅ ௫‖ܴ௫߶‖ଶଶߣ ൅ ௬ฮܴ௬߶ฮଶଶߣ ൅ ௭‖ܴ௭߶‖ଶଶ s.t.      ଵఒ್ߣ ൅ ଵఒೣ ൅ ଵఒ೤ ൅ ଵఒ೥ ൌ constant         (Eq. 2) 

Here, ߣ௕, ,௫ߣ	  and z ,ݕ ,ݔ ,௭ control the extent of regularization for the backgroundߣ ௬, andߣ	
components of the unknown phase (velocity), respectively, and the linear operator ܴ∗ indicates 
that the regularization is acting only on the “*” component. We selected matrix ܴ to be a finite 
difference approximation to the second derivative with respect to time. To solve for ߶෠஽௜ோ௔ in 
Eq. 2, we adopted an alternating minimization scheme: (i) solve for ߶ for given values of ߣ௕, ,௫ߣ ,௬ߣ ,௕ߣ ௭ (closed form), (ii) solve forߣ ,௫ߣ ,௬ߣ  ௭ for a given value of ߶ (closed form), andߣ
(iii) iterate over the last two step until convergence is reached. Once the phase is estimated, it is 
scaled with appropriate values of velocity encoding gradients to yield estimated velocity 
profiles. Note, both DiR and DiRa operate on reconstructed phase images on pixel-by-pixel 
basis, and the process (Eq. 1 for DiR and Eq. 2 for DiRa) is repeated for all pixels. 

Results: Four components of velocity (ݒ௫, ݒ௬, ݒ௭, and ݒ௕) were simulated in Matlab using 
Hann functions. The BFPE data were generated from the simulated velocity profiles. A total of 
256 trial runs were considered with different realizations of noise. Also, in each trial run, the 
widths of the four Hann functions were selected randomly, allowing the components to have 
different frequency contents. The results from one trial run are shown in Figure 1. Peak 
velocity error (computed as a percentage of the true peak velocity) is shown in Figure 2.   

Experimental data were collected from a pulsatile homebuilt phantom using a 1.5 T clinical 
scanner (Siemens Medical Solutions, Germany) using body matrix receive coils. Six identical 
datasets were collected using an EPI-PC sequence with BFPE, echo-train-length=7, matrix size=128x96, TE=13.2 ms, TR=23.5 ms, lines/segment=7, number of 
frames=32, parallel acceleeration factor=2. For reference standard, GRE-PC sequence was used with referenced four-point encoding, TE = 3.28 ms, TR=5.9 ms, lines 
per segment=1, number of frames=32, and parallel acceleration factor=2. For both EPI-PC and GRE-PC datasets, TGRAPPA3 was used for frame-by-frame image 
reconstruction. The DiR and DiRa methods were then applied on the resulting phase images to reconstruct velocity profiles 
at each pixel from the EPI-PC data. See results in Figure 3.  

Discussion: Each velocity component in DiR is assigned 1/4th of BWt. In 
practice, different components may have different frequency contents. For 
example, if the encoding direction is aligned with the flow direction at a given 
pixel, the signal for that pixel will primarily reside in one of the three spatial 
components. In this case, it is not reasonable to waste 1/4th of BWt on components 
that have minimum or no signal energy. Also, background phase may vary slowly 
over time, i.e., has a small value of ‖ܴ௕߶‖ଶଶ,  and may require less than 1/4th of 
BWt for high-fidelity representation. The proposed adaptive method, DiRa, by 
independently adjusting the regularization weight on each component, allows 
unequal distribution of BWt among the components. This setup permits higher 
BWa to components with larger values of ‖ܴ∗߶‖ଶଶ, i.e., signal energy in the high-
pass region. Figure 1 shows an example where there is a discrepancy in frequency 
contents of ݒ௫, ݒ௬, and ݒ௭, with ݒ௬—due to its narrower temporal footprint and 
higher amplitude—having higher energy in the high-pass region. The DiR method 
reduces the temporal resolution of ݒ௬ while assigning excessively large BWa to ݒ௫ and ݒ௭, which is manifested in the form of oscillations. Figure 2 shows that 

DiRa exihibits smaller bias and variation in the estimation of peak-velocity. The preliminary results presented in Figure 3 indicate that DiRa is in strong agreement with 
reference standard. In future we will quantitatively compare DiR and DiRa with the reference standard in vivo.   
Conclusions: We have presented and validated a new data processing method that improves the reconstruction quality of PC-MRI in terms of artifacts and temporal 
resolution. This same approach may also be applicable to 7D flow, and other phase-based measurements of dynamic processes, such as DENSE and elastography. 
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Figure 3: Peak velocity profiles from 
the pulsatile phantom data. Each entry 
in the profile represents the maximum 
(across all pixels) velocity magnitude in 
a frame. For DiRa, n=6.  

Figure 2: Simulation results for peak 
velocity error. Peak velocities of the two 
methods were compared for 256 trial 
runs, each with a different realization of ݒ௕, ,௫ݒ ,௬ݒ  ௭ profiles. One suchݒ
realization is shown in Figure 1. 
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