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Target Audience: Researchers and practitioners interested in developing methods to improve accuracy of blood flow measurement using PC-MRL

Purpose: Balanced four-point encoding (BFPE)' is a commonly employed encoding strategy for 4D PC-MRI. Recently, we proposed a method, called direct
reconstruction (DiR), which overcomes some of the limitations of standard sliding window approach. DiR is based on solving an underdetermined set of equations via
regularized least-squares. Being a linear method, DiR treats all velocity components equally, i.e., it assigns equal bandwidth to each component even when the true
frequency contents of the components are widely different from each other. Therefore, in DiR, the assigned bandwidth (BWa) for each component cannot exceed 1/4™
the total bandwidth (BWt), which is determined by the temporal sampling frequency. To overcome this limitation, here, we provide an adaptive formulation of DiR,
called adaptive DiR (DiRa), where the BWa of each velocity component is adapted based on a current estimate of its temporal frequency contents. This setup allows
components with more signal energy in the high-pass region to have higher BWa, leading to improved temporal resolution and reduced artifacts.

Methods: The recently proposed DiR method can be mathematically written as: ¢p;z = (BB + ARTR)™'BT@ (Eq. 1), where 6 represents all N noisy measurements
across time, B is a N X 4N underdetermined matrix that represents the forward model, R is a high-pass filter that provides stability to the underdetermined system of
equations, A controls the extent of regularization, and ¢p;z is a 4N X 1 vector that represents an estimate of the true unknown phase ¢. In contrast, the proposed DiRa
is formulated as
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Here, 4, A, 4,, and 4, control the extent of regularization for the background, x, y, and z - Input — Reconstructed
components of the unknown phase (velocity), respectively, and the linear operator R, indicates
that the regularization is acting only on the “*”” component. We selected matrix R to be a finite (a) 200 |Vx Vy o Vz

difference approximation to the second derivative with respect to time. To solve for ¢p;gg in 100 / \

Eq. 2, we adopted an alternating minimization scheme: (i) solve for ¢ for given values of 0 F——a/ T — A —/\\/L—
Aps Axs Ay, A, (closed form), (ii) solve for A, 44, 4,, 4, for a given value of ¢ (closed form), and

(iii) iterate over the last two step until convergence is reached. Once the phase is estimated, it is (b)200

scaled with appropriate values of velocity encoding gradients to yield estimated velocity 100 / \

profiles. Note, both DiR and DiRa operate on reconstructed phase images on pixel-by-pixel 0 ———" I S
basis, and the process (Eq. 1 for DiR and Eq. 2 for DiRa) is repeated for all pixels.
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Results: Four components of velocity (vy, v, v,, and v,) were simulated in Matlab using t t t

Hann functions. The BFPE data were generated from the simulated velocity profiles. A total of Figure 1: Representative simulation results. The true temporal

256 trial runs were considered with different realizations of noise. Also, in each trial run, the
widths of the four Hann functions were selected randomly, allowing the components to have
different frequency contents. The results from one trial run are shown in Figure 1. Peak
velocity error (computed as a percentage of the true peak velocity) is shown in Figure 2.

profiles for the three velocity components (vy, vy, v,) are shown in
dashed black line, and the reconstructed profiles are shown in solid
red line. Profile for the background phase (vy) is not shown. (a)
Recently proposed DiR method (Eq. 1). (b) The proposed adaptive

Experimental data were collected from a pulsatile homebuilt phantom using a 1.5 T clinical implementation, Difta (£q. 2).

scanner (Siemens Medical Solutions, Germany) using body matrix receive coils. Six identical
datasets were collected using an EPI-PC sequence with BFPE, echo-train-length=7, matrix size=128x96, TE=13.2 ms, TR=23.5 ms, lines/segment=7, number of
frames=32, parallel acceleeration factor=2. For reference standard, GRE-PC sequence was used with referenced four-point encoding, TE = 3.28 ms, TR=5.9 ms, lines
per segment=1, number of frames=32, and parallel acceleration factor=2. For both EPI-PC and GRE-PC datasets, TGRAPPA® was used for frame-by-frame image
reconstruction. The DiR and DiRa methods were then applied on the resulting phase images to reconstruct velocity profiles . .

at each pixel from the EPI-PC data. See results in Figure 3. DiR DiRa
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Discussion: Each velocity component in DiR is assigned 1/4™ of BWt. In
practice, different components may have different frequency contents. For
example, if the encoding direction is aligned with the flow direction at a given
pixel, the signal for that pixel will primarily reside in one of the three spatial
components. In this case, it is not reasonable to waste 1/4™ of BWt on components
that have minimum or no signal energy. Also, background phase may vary slowly
over time, i.e., has a small value of ||R, ||, and may require less than 1/4" of
BWt for high-fidelity representation. The proposed adaptive method, DiRa, by
independently adjusting the regularization weight on each component, allows
unequal distribution of BWt among the components. This setup permits higher
BWa to components with larger values of [|R,¢||%, i.e., signal energy in the high-
pass region. Figure 1 shows an example where there is a discrepancy in frequency
contents of vy, v, and v,, with v,—due to its narrower temporal footprint and
higher amplitude—having higher energy in the high-pass region. The DiR method
reduces the temporal resolution of v, while assigning excessively large BWa to
v, and v,, which is manifested in the form of oscillations. Figure 2 shows that
DiRa exihibits smaller bias and variation in the estimation of peak-velocity. The preliminary results presented in Figure 3 indicate that DiRa is in strong agreement with
reference standard. In future we will quantitatively compare DiR and DiRa with the reference standard in vivo.

Conclusions: We have presented and validated a new data processing method that improves the reconstruction quality of PC-MRI in terms of artifacts and temporal
resolution. This same approach may also be applicable to 7D flow, and other phase-based measurements of dynamic processes, such as DENSE and elastography.

References: [1] Pelc et al. J. Magn. Reson. Imag. 1991; 1: 405-413. [2] Ahmad et al. ISMRM 2013; 1336. [3] Breuer et al. Megan. Reson. Med. 2005; 53: 981-985.
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Figure 3: Peak velocity profiles from
the pulsatile phantom data. Each entry
in the profile represents the maximum
(across all pixels) velocity magnitude in
a frame. For DiRa, n=6.
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Figure 2: Simulation results for peak
velocity error. Peak velocities of the two
methods were compared for 256 trial
runs, each with a different realization of
Vp, Uy, Uy, U, Profiles. One such
realization is shown in Figure 1.
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