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Introduction: Two dimensional (2D) spatially selective radiofrequency (RF) pulses'? may be used to constrain the location® from which an MR signal is obtained. This
may lead to more time-efficient data collection by reducing the field of view (FoV) or may improve image quality by suppressing artefacts from outside the area of
interest’. Meanwhile, T,-Preparation’, or T»-Prep, is a magnetization preparation scheme used to improve blood/myocardium contrast. We propose incorporating a
"pencil beam" 2D RF pulse into a T,-Prep module, so as to produce a "2D T,-Prep" that combines T,-weighting with an intrinsic spatial selectivity. Numerical
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simulations, phantom validation, and in vivo results are
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pulse and spiral gradients (Fig. 1). This combination
selectively excites a cylindrical volume’. Meanwhile, the
final RF pulse (-90°) remains non-selective. As a result,
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the magnetization of the excited cylinder is restored,
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whereas magnetization outside of the cylinder is tipped ST
into the transverse plane and spoiled. The RF excitation

angles of the first and last pulse were also increased to oj—uWWM*

¢ (+G, spoiler)

+100°, to further reduce signal via inversion recovery.

To predict the effect of this approach, the excitation
profile of the 2D T,-Prep pulse was simulated in MATLAB. After numerical
simulations, the technique was implemented on a 1.5T clinical scanner (MAGNETOM
Aera, Siemens AG, Healthcare Sector, Erlangen, Germany) and phantom images were
acquired to compare the numerically predicted excitation profile to its experimental
counterpart (Fig. 2). Next, volume targeted 3D images of the left coronary arterial
system were acquired in 8 healthy adult subjects. All images were obtained using a 3D
navigator- and cardiac-gated segmented k-space Cartesian gradient echo sequence,
with FoV 432x262 mm, matrix size 432x262, 1.5 mm reconstructed slice thickness, 8
k-space lines/heartbeat, 40 ms T»-Prep, water selective excitation pulses, RF excitation
angle 20°, TE/TR/T,q=5.18/11.62/92 ms. Full FoV images were acquired with both
the conventional T,-Prep and the 2D T,-Prep. The 2D T,-Prep scan was then repeated
with a substantially reduced FoV (tFoV: 112x112 mm, matrix size 112x112) to
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Figure 1: Schematic representation of the 2D T,-Prep and the corresponding simulated excitation profile.
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accelerate scanning. All images were reformatted and analyzed using Soap-Bubble®.
The 3 T,-Prep techniques (conventional, 2D, and 2D with rFoV) were compared
using vessel sharpness measurements, contrast-to-noise (CNR), and signal-to-noise

(SNR) quantification in the blood and myocardium.
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Figure 3: Comparison of T,-Prep techniques in vivo
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Figure 2: In Vitro Signal Profile for Conventional T,-Prep vs 2D T,-Prep

Results: The simulated excitation profile of the 2D pulse can be seen in Fig. 1, with
corresponding, experimentally measured in vitro excitation profiles shown in Fig. 2. Note that
a 100% background signal suppression is not obtained (black arrow). Sample in vivo images
(prior to vessel-tracking image reformatting) are shown in Fig. 3, with corresponding
measurements shown in Table 1. The region targeted by the 2D pulse is outlined by the dashed
yellow circle. Note the respiratory artefacts originating from the chest wall on the conventional
image (yellow arrow). These are significantly attenuated with the 2D T,-Prep (green arrow).
Additionally, the 2D T,-Prep's mean blood and myocardium SNRs (349.0 and 108.3,
respectively) stayed within the same range as the conventional T»-Prep's (344.8 and 104.1).
The 2D T,-Prep also preserved blood-myocardium CNR (240.8) as compared to the
conventional T»-Prep (240.6), demonstrating that the 2D T,-Prep successfully maintains T»-
weighting. Vessel sharpness was also comparable (50.8% conventional vs. 53.8% 2D T,-Prep).

In going to a reduced FoV, the mean blood SNR (268.7) decreased significantly (p<0.05), as
did the blood-myocardium CNR (166.5, p<0.05) and vessel sharpness (46.5%, p<0.05) as
compared to the above sequences. However, these losses in SNR and CNR are consistent with
the associated reduction in scan time, which results from the decreased number of phase
encoding steps (262 vs. 112) in the rFoV image. As a result, total scan time was reduced by
60%. Myocardium SNR was not significantly affected, though artefactual contributions may
have artificially inflated the rFoV numbers. For instance, residual foldover signal remains
present in the rFoV image (red arrow), which is consistent with phantom measurements above.

Discussion: A 2D T,-Prep shows promise to reduce
respiratory motion artefacts and to potentially decrease
scan time, while preserving the T,-weighting of a
conventional T,-Prep. It should thus be considered as a
tool to help accelerate T,-prepared cardiac imaging.
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Table 1: Mean SNR, CNR, and Vessel Sharpness (+ SD) in Tissue ROIs for Select Imaging Strategies.

Conventional 2D Spatially Selective 2D Spatially Selective
Image Property T,-Prep T,-Prep T,-Prep with rFoV
Blood SNR 344.8 £54.2 349.0 +58.8 268.6 +88.4
Myocardium SNR 104.1+17.4 108.3 +26.9 102.1 +35.7
Blood-Myocardium CNR 240.6 +44.6 240.8 +41.5 166.5 +60.0 -
Vessel Sharpness (%) 508 +7.4 53.8+3.9 465+9.1"7

" Indicates a statistically significant diff. (p<0.05) between the conventional T,-Prep and 2D rFoV T»-Prep.
T Indicates a statistically significant diff. (p<0.05) between 2D T,-Prep and 2D rFoV T,-Prep.
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