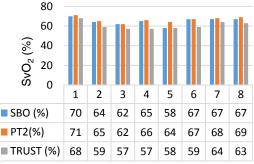

Comparison of TRUST, projection-based T2 imaging with susceptometry-based oximetry for the quantification of venous oxygen saturation

Suliman A. Barhoum¹, Zachary B. Rodgers¹, Michael C. Langham¹, Jeremy F. Magland¹, and Felix W. Wehrli¹ ¹Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States


Introduction: Venous oxygen saturation (SvO_2) is an important physiological parameter, e.g. quantification of SvO_2 in the superior sagittal sinus (SSS) or jugular veins allows quantification of global CMRO₂. So far, two approaches have been practiced: In T₂-based approaches the blood signal is isolated using subtraction techniques analogous to arterial spin labeling (ASL)¹ or phase-contrast MRA^{2, 3}, following a T₂-preparation CPMG train. In susceptometry, estimation of SvO_2 relies on phase mapping. The purpose of this work was to compare three different techniques (two T₂-based^{3, 4} and one susceptometry-based⁵) for quantifying SvO_2 in the human brain at the level of the SSS.

Methods: T_2 -based methods: The TRUST blood signal was isolated in the usual manner⁴ and mapped as a function of eTE determined by the duration of the T₂-preparation CPMG train (0, 36.6, 73.2, 146.5 ms). In the projection-based T₂ (PT₂)³ measurement the blood signal was isolated by taking the complex difference between velocity-encoded projections as a function of eTE (18.3, 36.6, 73.2, and 146.5 ms). <u>Susceptometry</u>: SvO₂ was quantified as described in ref [6] based on a field map to estimate the susceptibility difference between the intravascular blood and surrounding tissue. The pulse sequence⁵ is designed to quantify SSS SvO₂ and cerebral blood flow (CBF) in the major vessels feeding the brain simultaneously by means of two interleaved phase difference images yielding SvO₂ and CBF maps. <u>Pulse-sequence parameters:TRUST</u>: Thickness of imaging slice= 5 mm, thickness of labeling slab= 50 mm, and gap between imaging slice and labeling slab is 25 mm. Field of View (FOV) =230 x 230 mm², matrix size= 64 x 64 with partial Fourier acquisition, repetition time (TR) = 3000 ms, EPI echo time = 7.47 ms, and inversion time (TI) for the blood to flow from the labeling slab to the imaging slice = 1200 ms. <u>PT₂</u>: FOV= 176 × 176 mm², matrix size=176×1, TR=1875 ms, TE=10.2 ms, and VENC=20 cm/s which is close to the average blood flow velocity in the SSS to minimize sensitivity of T₂ to the SSS pulsatility. <u>Susceptometry-based oximetry</u> (<u>SBO</u>): FOV=208 x 208 mm², matrix size=208×208, TR=35 ms, VENC=60 cm/s, and the echo spacing between the same-polarity echoes ($\Delta TE=7.04$ ms). <u>In-vivo studies-</u> SSS SvO₂ was measured at resting state in eight healthy subjects (mean age 32±6 years) at 3T (Siemens TIM Trio) using the three techniques in the same session with 10 successive measurements being made for each method.

Figure 1: (a) TRUST: Difference images at four eTEs. (b) Weighted projections at four eTEs, both at the level of the SSS.

Figure 2: (a) magnitude and (b) phase image at the level of SSS to derive SvO₂.

Figure 3: SvO_2 derived with the three methods: susceptometry-based oximetry (SBO), projection T_2 (PT2) and TRUST in eight subjects.

<u>Results:</u> Figure 1a shows cropped TRUST difference images as a function of eTE. Localizer and projection images versus eTE are given in Figure 1b. An example of a magnitude and phase image obtained by SBO is presented in Figure 2. The bar graph in Figure 3 compares SvO₂ derived with the three methods. Mean SvO₂ for the three methods was $65 \pm 4\%$ (SBO), $67 \pm 3\%$ (PT₂), and $61 \pm 4\%$ (TRUST). ANOVA indicated PT₂ and SBO results not to be different (p>0.05) but TRUST yielded mean values that were slightly lower than those obtained by PT₂ (p=0.01). **Conclusions:** There was good agreement among the three methods based on measurement of venous blood T₂ (TRUST and projection T₂), and susceptometry. The reasons for the slightly lower values for TRUST need further scrutiny. The main advantage of the susceptometric technique is that is simultaneously measures CBF and SvO₂, therefore generally providing superior temporal resolution. On the other hand, T₂-based methods are vessel geometry independent.

References: [1] Detre et al, EJR 1999, [2] Krishnamurthy et al, MRM 2013, [3] Jain et al, MRM 2012, [4] Lu et al, MRM 2008, [5] Jain et al, JCBFM 2010, [6] Haacke et al, Magnetic resonance imaging: physical principles and sequence design. New York: John Wiley & Sons; 1999. Acknowledgment: R21-HD069390.