

Quantification of CPMG relaxation rate in MRI of lung tissue

Felix Tobias Kurz¹, Thomas Kampf², Sabine Heiland¹, Martin Bendszus¹, Heinz-Peter Schlemmer³, and Christian Herbert Ziener³

¹Division of Neuroradiology, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany, ²Experimental Physics 5, University of Wuerzburg, Wuerzburg, Bavaria, Germany, ³Radiology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany

Target audience The present work targets investigators with an interest in quantitative CPMG measurements of capillary networks around lung alveoli and also addresses researchers with a focus on theoretical aspects of MR imaging.

Purpose Changes in lung tissue micromorphology are fundamental in evaluating (early stage) lung pathology as well as target-specific therapy strategies e.g. for lung cancer¹. Here, an expression for transverse relaxation rate R_2 in dependence of interecho-time τ_{180} for Carr-Purcell-Meiboom-Gill (CPMG) sequences is provided that allows to quantify microstructural parameters for dense capillary networks around lung alveoli.

Methods Peripheral lung tissue consists of densely packed alveoli that can be thought of air-filled spheres embedded in a network of closely spaced capillaries. In an external magnetic field B_0 , the alveoli can be described as spherical magnetic field inhomogeneities generated by the susceptibility difference between air and blood². In close analogy to Krogh's capillary model, symmetry arguments allow to consider a single sphere of radius R_A surrounded by a spherical spin dephasing volume R ³ with the volume fraction $\eta = R_A^3/R^3$. For $R_2 = R_{2,0} + \Delta R_2$ with intrinsic and diffusion-related transverse relaxation rate $R_{2,0}$ and ΔR_2 , respectively, ΔR_2 can be expressed within a weak field approximation in close analogy to⁴ in terms of inter-echo time τ_{180} , correlation time $\tau = R_A^2/D$, susceptibility-dependent frequency shift $\delta\omega$.

$$\frac{\Delta R_2}{\tau \delta\omega} = \frac{8}{\pi^2} \sum_{m=0}^{\infty} \frac{1}{[2m+1]^2} \sum_{n=0}^{\infty} \frac{G_n \kappa_n^2}{\kappa_n^4 + [\pi(2m+1)\tau/\tau_{180}]^2} \quad \text{with } G_n = \frac{216}{5\kappa_n^2} \frac{\eta}{1-\eta} \left[1 - \eta^3 \frac{j_2(\kappa_n)}{j_2(\kappa_n/\sqrt[3]{\eta})} \right]^2 \left[\eta \left[\eta \frac{2}{3} \kappa_n^2 - 6 \right] \frac{j_2(\kappa_n)}{j_2(\kappa_n/\sqrt[3]{\eta})} \right]^2 + 6 - \kappa_n^2$$

where parameters κ_n obey the equation $j_2'(\kappa_n) y_2'(\kappa_n \eta^{-1/3}) = y_2'(\kappa_n) j_2'(\kappa_n \eta^{-1/3})$ and j_2' and y_2' are the first derivatives of the spherical Bessel functions of the first and second kind, respectively.

Results In Fig. 2, theoretical results for ΔR_2 are compared with experimental data for excised lung samples of wistar rats⁵: for passively deflated lung tissue, $\tau = 3.79$ ms, $\delta\omega = 276$ Hz and consequently magnetic susceptibility follows as $\chi = 0.12$ ppm ($B_0 = 2.1$ T) which is close to that of blood ($\chi = 0.18$ ppm⁶). For degassed lung tissue, $\tau = 2.79$ ms, $\delta\omega = 6.33$ kHz and, since alveoli are here reduced to the size of a capillary ($R_A \sim 2.5$ mm⁷), diffusion coefficient $D = 2.24 \mu\text{m}^2/\text{ms}$ is in very good agreement with the expected value ($D = 2.30 \mu\text{m}^2/\text{ms}$) for water spin diffusion⁸.

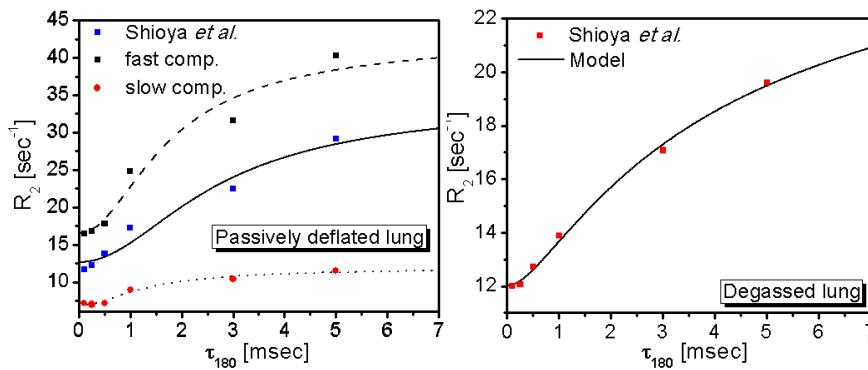


Fig.2: Model CPMG relaxation rate $R_2 = 1/T_2$ in dependence of inter-echo time τ_{180} for passively deflated and degassed lung tissue (continuous lines) in comparison with experimental data⁵. Also, in the left figure, model R_2 for fast and slow components of the biexponential inverse T_2 signal are shown and compared with experimental values (dashed and dotted lines, respectively)⁵. For small τ_{180} , R_2 increases quadratically with τ_{180} to reach a plateau for larger τ_{180} , though R_2 grows slower for degassed lung tissue due to the reduction of air-tissue interfaces.

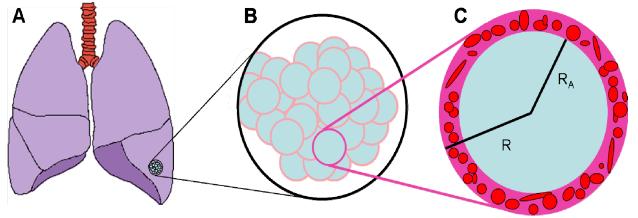


Fig.1: Schematic view of human lungs (A), lung tissue segment with numerous spherical alveoli (B) and cross section of a single alveolus (C). The alveolar tissue wall contains a dense capillary network.

Discussion & Conclusion Model signal behavior for R_2 agrees well with experimental data. A possible application might be the determination of pseudo-diffusion coefficients for in-vivo lung tissue measurements to evaluate lung perfusion in the intravoxel incoherent motion model⁹.

References

1. Wood SL, et al., *Cancer Treat Rev* 2013; doi:10.1016/j.ctrv.2013.10.001.
2. Bertolina JA, et al., *J Magn Reson* 1992;99:161-169.
3. Krogh A, *J. Physiology* 1919;52:457-474.
4. Ziener CH, et al., *J Magn Reson* 2010;202:38-42.
5. Shioya S, et al., *Tokai J Exp Clin Med* 1997;22:27-31.
6. Haacke EM, et al., *Magnetic resonance imaging: physical principles and sequence design*, Wiley, NY, 1999.
7. Sexton WL, et al., *Am J Physiol* 1994;266:H1502-11.
8. Krynicki K, et al., *Faraday Discuss Chem Soc* 1978;66:199-208.
9. Le Bihan D, *Radiology* 2008;249:748-752.