Visual identification of brown adipose tissue in adult humans using Dixon MRI
Terence Jones', Narendra Reddy?, Sarah Wayte®, Oludolapo Adesanya®, Thomas Barber®, and Charles Hutchinson'
'Medical School, University of Warwick, Coventry, West Midlands, United Kingdom, *Metabolic Health, University Hospitals Coventry & Warwickshire, Coventry,
CV2 2DX, United Kingdom, *Medical Physics, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, United Kingdom, *Radiology, University Hospitals
Coventry & Warwickshire, Coventry, West Midlands, United Kingdom, *Health Sciences, University of Warwick, Coventry, West Midlands, United Kingdom

TARGET AUDIENCE: Radiologists, endocrinologists and those with an interest in bariatric imaging.

INTRODUCTION: There is on-going interest in human brown adipose tissue (BAT) following its identification in human adults using *F-FDG PET-CT
and its potential role as a pharmacological target in the treatment of obesity. A reliable means of imaging BAT is essential to monitor response to such
pharmacological stimulation. PET-CT relies on the uptake of the radioactive isotope '®F-FDG and therefore only identifies metabolically active BAT. The
lower fat content of BAT compared to white adipose tissue (WAT) has been exploited using Dixon based MRI imaging methods to visualize BAT in
rodents [1] , in a human infant [2] and in adult humans [3]. However, a reliable means of identifying BAT prospectively in adult humans on MR has
proved elusive. Based on a single case in which we also obtained immuno-histochemical confirmation of BAT, we postulated it may be possible to
identify BAT in human adults by visual inspection of Dixon imaging [4] .

AIM: To determine the accuracy of visually |dent|fy|ng BAT in adult humans on Dixon based MRI imaging, by comparison with '°F-FDG PET-CT.

METHOD: 16 volunteers were recruited on the basis of having BAT on '®F-FDG PET-CT
performed for clinical reasons. Each underwent a 3-echo TSE IDEAL sequence on a GE 3T
HDxt scanner (GE Medical Systems, Milwaukee, USA) using the cardiac coil. 2.5 - 5mm axial
images were obtained from the upper cervical to mid-thoracic level. The IDEAL sequence
parameters were: TR(ms)/TE(ms)/matrix/NEX/FoV(cm) = 440/10-7-11.1/512X512/3/30-40. This
generated water-only and fat-only images, of which the latter were used for subsequent
analysis.

Metabolically active BAT was identified on PET-CT on the basis of '®F-FDG uptake within fat
with a standardized uptake value (SUV) >2.5 g/ml. BAT depots were delineated by semi-
automatically defining isocontours set at an SUV of 2.5 g/ml around the depots ("BATeer"). PET-
CT images were registered with
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correlation was observed between BMI and the differences between each test (figure 3). Bland-Altman plots give no indication of whether BATeer and
BATwr occur in the same areas therefore the degree of correlation between BATper and BATwr depots was assessed using Mander’s correlation
coefficient; the degree of colocalization increased with increasing volumes of BAT (figure 4).

The low correlation coefficients may also be due to difficulties with image registration and in part due to the relatively small difference in signal between
‘brown’ and ‘white’ fat.

CONCLUSION: Our implementation of Dixon MRI underestimates BAT volume when compared with PET-CT.
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