

Free-breathing quantification of liver proton density fat-fraction

Utaroh Motosugi^{1,2}, Diego Hernando¹, Peter Bannas^{1,3}, James H. Holmes⁴, Kang Wang⁴, Ann Shimakawa⁵, Yuji Iwadate⁶, Valentina Taviani⁷, and Scott B. Reeder^{1,8}
¹Radiology, University of Wisconsin, Madison, WI, United States, ²Radiology, University of Yamanashi, Chuo-shi, Yamanashi, Japan, ³Radiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany, ⁴Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States, ⁵Global MR Applications and Workflow, GE Healthcare, Menlo Park, CA, United States, ⁶Global MR Applications and Workflow, GE Healthcare, Hino, Tokyo, Japan, ⁷Radiology, Stanford University, Stanford, CA, United States, ⁸Medical Physics, Biomedical Engineering and Medicine, University of Wisconsin, Madison, WI, United States

Target audience: Radiologists and scientists who are interested in liver imaging and fat quantification

Purpose: To evaluate the feasibility and the validity of confounder-corrected chemical shift-encoded MRI for quantification of hepatic proton density fat fraction (PDFF) using respiratory-gating methods with either respiratory bellows or navigator echoes.

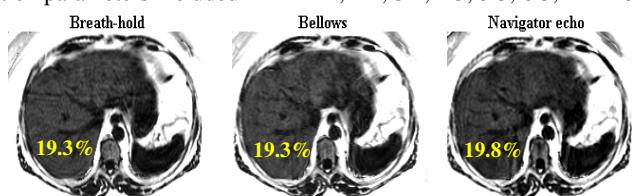
Methods: Twelve patients (mean age of 57.3 years, M:F 6:6) who were scheduled for routine clinical abdominal MRI were recruited after obtaining IRB approval and informed consent. The subjects consisted of 6 men and 6 women (mean age = 57.3 years). Imaging was performed on a clinical 3T scanner (MR750, GE Healthcare, Waukesha, WI) using a 32-channel phased array body coil. The following 4 acquisitions were performed in all subjects to measure PDFF; (1) breath-hold (**BH**) IDEAL-IQ, a chemical shift encoded water-fat separation method used clinically for measuring PDFF¹, (2) free-breathing IDEAL-IQ with respiratory gating using bellows (**BL**); (3) free-breathing IDEAL-IQ with respiratory gating using navigator echoes (**NV**)², (4) single voxel multi-echo T2-corrected STEAM spectroscopy (reference standard).

The entire liver was scanned in the axial plane for all scans. Phase encoding for BL and NV were set as left-to-right to reduce respiratory motion-related artifact in the liver and anterior-to-posterior for BH. Other acquisition parameters included: TE = 1.2, 2.2, 3.2, 4.3, 5.3, 6.3, TR = 8.0 ms, FA = 3°, matrix = 256×144×32, slice thickness = 8 mm, scan time = 16s for BH and ~1:20 min for BL and NV. An on-line reconstruction algorithm was used to perform T2* correction, spectral modeling and eddy current correction to create quantitative PDFF maps over the entire liver.

For STEAM spectroscopy, a $2.0 \times 2.0 \times 2.0 \text{ cm}^3$ voxel was placed in the posterior lobe of the liver. STEAM parameters included: TE = 10, 15, 20, 25, 30 ms (multiple echoes to enable T2 correction), TR = 3500 ms, 1 signal average, 2048 points, and a spectral width of 5kHz, acquired in one breath-hold of 21s. Fat-quantification from STEAM multi-echo data was performed using the AMARES³ algorithm under jMRUI⁴, followed by calculation of T2-corrected fat-fraction in Microsoft Excel.

Fat fraction measurements were performed from PDFF maps by placing 2 region of interest (ROI) in each anterior, posterior, and lateral lobe. Average values of each lobe were compared among the 3 IDEAL-IQ methods. The mean PDFF values of posterior lobe of the 3 different IDEAL-IQ acquisitions were compared with STEAM spectroscopy serving as the reference standard. Visual assessment of image quality was performed independently by 2 radiologists using a 3-point scale; 3-good, 2-fair, 1-non-diagnostic.

Intra-class correlation coefficient (ICC) with 95% confidence interval was calculated between BH, BL, and NV. Intra-individual difference was calculated for each liver lobe. Two-one-sided test was used with a null hypothesis of “1% difference was assumed between BH, BL, and NV”. If the p value of <0.05 was observed for the comparison, we adopted an alternative hypothesis of “no more than 1% difference was assumed”. PDFF of STEAM-MRS and 3 IDEAL-IQ were compared using Bland-Altman plots and ICCs were calculated.


Results: Image quality was rated as good in 6 cases (both readers) for BH, 9 (reader 1) and 8 (reader 2) cases for BL, and 8 and 7 cases for NV, respectively. (Fig. 1) No acquisition was assigned as non-diagnostic. The difference between any 2 of 3 IDEAL-IQ PDFF had no more than 1%. (Table 1) The ICCs between PDFF of IDEAL-IQ versus STEAM spectroscopy were shown in Fig. 2.

Discussion: In this work we have demonstrated the feasibility of two free-breathing chemical shift-encoded methods to quantify PDFF in the liver. Both methods had high image quality and excellent agreement with MRS and breath-hold MRI methods, indicating that both free-breathing methods may be valid and reliable approaches to quantify liver fat in patients who are unable to hold their breath.

Conclusion: PDFF measurement using respiratory-gating methods with bellows or navigator echo were feasible and valid technique.

References; 1) Meisamy S, et al. Radiology 2011; 258: 767-775, 2) Nagle SK, et al. J Magn Reson Imaging 2012; 36: 890-99, 3) Vanhamme L, et al. J Magn Reson 1997; 129: 35-43, 4) Stefan, et al. Meas Sci Technol 2009; 20:104035

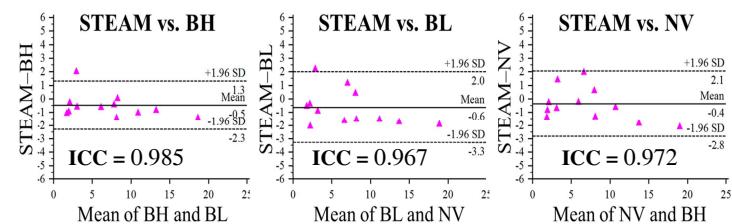

Acknowledgement: We acknowledge the support of the NIH (R01 DK083380 and R01 DK088925). We also wish to thank GE Healthcare for their support.

Fig 1. Visually, equivalent image quality was obtained from the 3 IDEAL-IQ methods; Percentages on the images are fat fractions measured in posterior lobes (STEAM-MRS showed 18.0%).

	BH - BL	BL - NV	NV - BL
Anterior lobe			
ICC (95%CI)	0.99 (0.97–0.99)	0.98 (0.95–0.99)	0.98 (0.94–0.99)
Difference (SD)	0.1 (0.7)	0.2 (0.9)	0.3 (0.9)
p value*	0.0004	0.0031	0.0061
Posterior lobe			
ICC (95%CI)	0.988 (0.96–0.99)	0.991 (0.97–0.99)	0.981 (0.94–0.99)
Difference (SD)	-0.4 (0.5)	0.3 (0.7)	-0.1 (0.5)
p value*	0.0049	0.0040	0.0084
Lateral lobe			
ICC (95%CI)	0.962 (0.88–0.98)	0.972 (0.91–0.99)	0.914 (0.75–0.97)
Difference (SD)	-0.1 (0.9)	0.1 (1.0)	-0.1 (1.6)
p value*	0.0056	0.0046	0.0430

Table 1. Excellent intra-class correlation (ICC) and small differences of PDFF measurement between the 3 IDEAL-IQ in each liver lobe was seen. *Note; A p value of <0.05 indicates no more than 1% difference in measurement between the 2 methods.

Fig 2. Bland-Altman plots show very small differences in measurement of proton density fat fraction (PDFF) by 3 IDEAL-IQ methods compared to STEAM-MRS with intra-class correlation coefficient (ICC); breath-hold (BH), respiratory-triggering with bellows (BL) and navigator echo (NV).