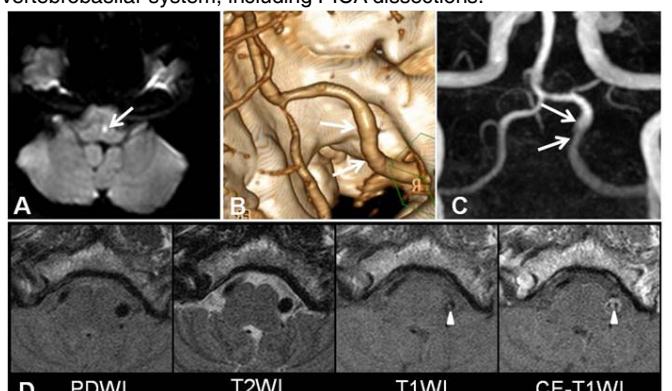


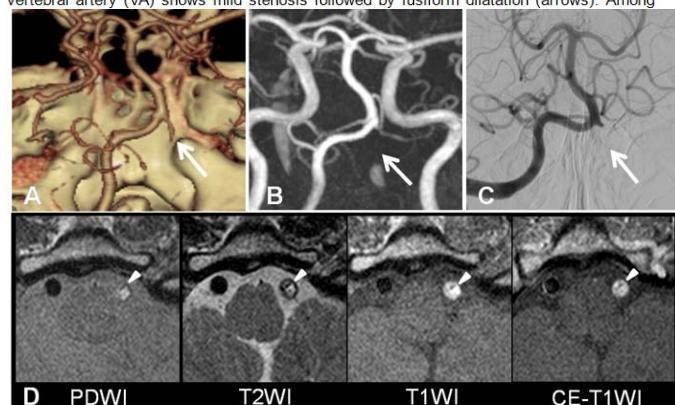
Feasibility of High-resolution MR Imaging for the Diagnosis of Arterial Dissection Involving the Intracranial Vertebrobasilar System

Jin Wook Choi¹, Miran Han¹, Sun Yong Kim¹, and Nae Jung Lim¹

¹Radiology, Ajou University School of Medicine, Suwon, Gyeonggi, Korea


PURPOSE: Arterial dissection is a significant cause of stroke in younger patients¹. A safe and feasible tool for early diagnosis is needed to prevent neurologic sequelae.^{2,3,4} This study aimed to evaluate the feasibility of high resolution (HR) MRI to diagnose arterial dissection involving the intracranial vertebrobasilar system.

METHODS: We retrospectively reviewed 43 patients who underwent HR-MR imaging between March 2012 and March 2013. The intracranial vertebrobasilar system was tentatively diagnosed clinically and radiologically. Two neuroradiologists reviewed the HR-MR images (PDWI; T1WI; T2WI; contrast enhanced(CE) T1WI) for indications of dissection; i.e., mural hematoma or a dissection flap. On T2WI, the outer diameter enlargement of the affected vessel presented as steno-occlusive lesions on angiography and was also recorded as a sign of dissection.


RESULTS: Twenty-six dissecting lesions were diagnosed on HR-MR imaging. A mural hematoma was observed in 12/26 (46%) lesions on PDWI, 12/26 (46%) on T2WI, 20/26 (77%) on T1WI, and 16/22 (73%) on CE-T1WI. A dissection flap was seen in 10/26 (38.5%) lesions on PDWI, 18/26 (69%) on T2WI, 17/26 (65%) on T1WI, and 21/22 (95.5%) on CE-T1WI. Outer diameter enlargement was detected in 17/26 (65%) lesions on T2WI.

DISCUSSION: Although conventional angiography is considered the standard diagnosis tool for arterial dissection, direct signs of dissection (i.e., intimal flap or double lumen) are seen in less than 10% of cases.³ Also, it is an invasive procedure with complications ranging from a minor groin hematoma to severe neurological deficits. Particularly, in the case of dissection, increased arterial pressure from the contrast injection during conventional angiography may aggravate an existing dissection or cause a new infarction due to migration of the thromboembolism. Therefore, non-invasive studies are highly recommended.⁵ In our results, mural hematomas were detected in 77% of dissection lesions on T1WI. In contrast, dissection flaps, the most direct evidence of dissection, were observed in 95.5% of lesions on CE-T1WI. Therefore, we propose that dissection flaps are more reliable for the diagnosis of dissections, and CE-T1WI is a requisite modality for intracranial dissection MR. Most patients with dissections demonstrate a complete clinical recovery; however, there is an approximately 10–12% overall risk of death, recurrent TIA, or stroke. The risk of recurrent spontaneous dissection is also 2% within the first month.³ Therefore, follow-up imaging may be needed, especially for dissections showing aneurysmal changes. HR-MRI can be useful not only in the initial diagnosis but also for follow up.

CONCLUSION: This study investigated the efficacy of HR-MRI in the diagnosis of intracranial arterial dissection involving the vertebrobasilar system, including PICA dissections. Dissections were well visualized on HR-MR imaging even in patients who presented with only occlusions or stenosis on angiography. In conclusion, HR-MR imaging is likely a useful and non-invasive diagnostic tool for diagnosis of arterial dissection involving the vertebrobasilar system, including PICA dissections.

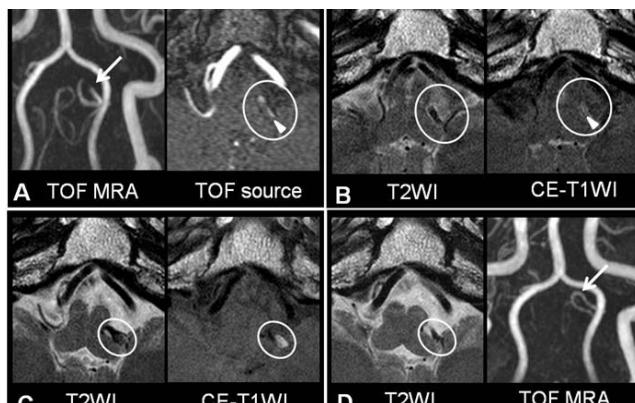

Fig. 1. a 56-year-old male who complained of dizziness, vomiting, and gait disturbance. CTA and MRI was performed 1 day after symptom onset. (A) DWI shows a focal high signal intensity lesion (arrow) at the left paramedian medulla. (B) CTA and (C) TOF-MRA of the left vertebral artery (VA) shows mild stenosis followed by fusiform dilatation (arrows). Among

Fig. 2. a 56-year-old male who complained of posterior headache and did not have a brain parenchymal lesion. CTA, DSA, and MRI were obtained 15 days after symptom onset. (A) CTA, (B) TOF-MRA, and (C) DSA show occlusion of the left VA (arrows). At the occluded segment of VA, not only a high signal intensity hematoma but also a dissection flap (arrowheads) is apparent on all HR-MR images (D).

REFERENCES:

1. Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. *The New England journal of medicine*. 2001;344:898-906
2. Takano K, Yamashita S, Takemoto K, Inoue T, Kuwabara Y, Yoshimitsu K. MRI of the intracranial vertebral artery dissection: Evaluation of intramural haematoma using a black blood, variable-flip-angle 3d turbo spin-echo sequence. *Neuroradiology*. 2013;55:845-851
3. Mohan IV. Current optimal assessment and management of carotid and vertebral spontaneous and traumatic dissection. *Angiology*. 2013
4. Provenzale JM, Sarikaya B. Comparison of test performance characteristics of mri, mr angiography, and ct angiography in the diagnosis of carotid and vertebral artery dissection: A review of the medical literature. *AJR. American journal of roentgenology*. 2009;193:1167-1174
5. Engelter ST, Brandt T, Debetto S, Caso V, Lichy C, Pezzini A, et al. Antiplatelets versus anticoagulation in cervical artery dissection. *Stroke; a journal of cerebral circulation*. 2007;38:2605-2611

Fig. 3 a 33-year-old male who complained of headache and sensory changes. Initial MRA and MRI were obtained 2 days after symptom onset. (A) TOF-MRA shows stenosis and dilatation (arrow) of the left PICA. An intimal flap was seen on the source image of TOF-MRA (arrowhead). (B) Dissection affecting the lateral medullary segment of the left PICA was confirmed on HR-MR imaging (lesion inside the white circles, dissection flap arrowheads). (C) In the follow-up study 4 months later, aneurysmal dilatation of the previous dissecting lesion was detected. All HR-MRI sequences, PDWI, T2WI, T1WI, and contrast-enhanced (CE) T1WI show luminal dilatation and an intraluminal high-signal-intensity hematoma (lesion inside the white ellipses). (D) In the most recent follow-up images 7 months after the initial diagnosis, the aneurysmal dilatation was normal on HR-MR images and TOF-MRA (lesion inside the white ellipses).