

Synaptic Amyloid Beta Affects Neural Conductivity But May Not Lead to Pre-synaptic Axonal Degeneration

Shu-Wei Sun¹, Chen-Fang Chung², Christopher Nishioka³, Hsiao-Fang Liang², and Wei-Xing Shi²

¹Loma Linda University, Loma Linda, CA, United States, ²Loma Linda University, CA, United States, ³University of California, Riverside, CA, United States

Introduction

Synaptic deficits and brain atrophy are two major pathological hallmarks in Alzheimer's disease (AD). Synaptic deficits usually occur early in contrast to the neuronal loss which usually occurs late. Thus, it is speculated that the early synaptic deficits may facilitate the later neuronal loss. In AD, the Amyloid Beta (A β) is one potent toxin to cause neuropathology (1). A β is toxic to neurons and synapses. In this study, we tested the hypothesis that A β located in synapses could induce a retrograded axonal degeneration in presynaptic nerves to later cause neuronal loss. To be able to apply A β to selectively affect synapses but not the neuronal bodies *in vivo*, we used the visual system. The advantage of visual system is that the neuronal bodies are retinal ganglion cells (RGCs) located in the eyes, while the axons are extended to the lateral geniculate nucleus (LGN) in the middle of the brain. Injecting A β peptides in LGN would allow A β to affect only synapses but not the soma of RGCs.

Materials and Methods

4 nmole or 10 nmole of A β ₁₋₄₂ (N = 8 and 5, respectively) was injected in the left LGN of 12-week-old female C57BL/6 mice (2). Longitudinal Diffusion Tensor Imaging (DTI) was collected using a Bruker 4.7T BioSpec with TR 2 s, TE 29 ms, Δ 20 ms, δ 3 ms, 6 gradient directions with b 0.85 ms/ μ m² and 1 b₀, NT of 3, Slth 0.5 mm, FOV 1.5 cm x 1.5 cm, and matrix 128 x 128. ROI was selected in optic nerves (ON) and optic tracts (OT). At 3 months after A β injection, animals were sacrificed for immunohistochemistry analysis. For the 10 nmole A β treated mice, the visual evoked potentials (VEP) were recorded before sacrificing the animal.

Results

There was no significant change of DTI in A β affected nerves compared to controls, regardless of 4 or 10 nmole A β injections (Figs. 1 and 2). For the 10 nmole A β treated mice, we also recorded VEP to examine the visual nervous functions. The A β -affected eye showed a significant decrease of VEP amplitude and a significant increase of VEP latency.

Discussion

The synaptic depression caused by A β has been acknowledged as one of the key pathological mechanisms to cause the memory loss and cognitive impairment in the early stage of AD (3). It has been speculated that the toxicity of A β might not stop at synapses but the consequent cascades may disturb neurons and axons leading to the neuronal loss at a later time point. However, in 3 months after injecting A β in LGN, no damage was found in ON and OT. In contrast to the normal-appeared ON and OT, the impaired VEP suggested that the visual functional conduction was affected by A β . A β may have caused synaptic depression in the RGC terminals. However, the A β -facilitated synaptic depression did not lead to pre-synaptic degeneration.

Conclusion

A β injected in axonal terminals may impair synapses to adversely affect the neural signal conduction. However, the injured synapses may not lead to a retrograded axonal degeneration to cause a neuronal loss.

References

- (1) Selkoe DJ, J Biol Chem 1996;271:18295-18298.
- (2) Sun et al, J Alzheimers Dis. 2014 1;38:93-101.
- (3) Kamenetz F et al. Neuron 2003;37:925-937.

Acknowledgement

NIH R01 NS062830.

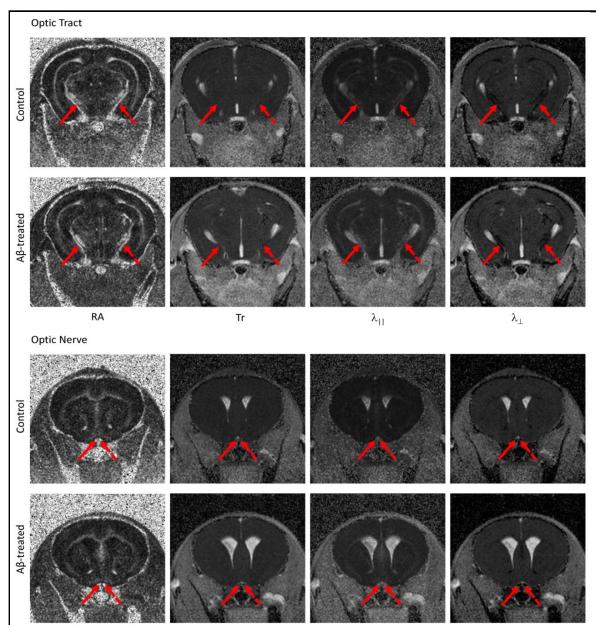


Fig. 1, DTI of A β -treated and control mice. The arrows indicated optic nerves and tracts.

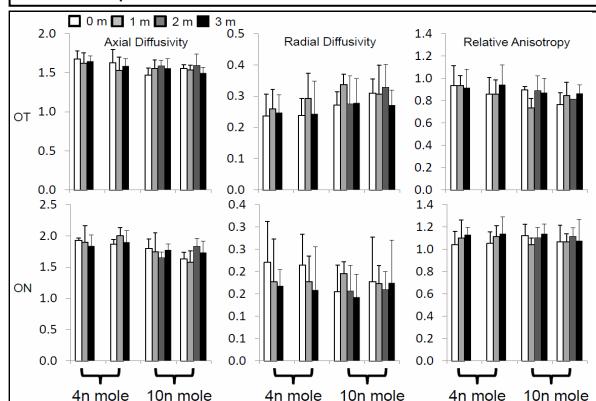


Fig. 2, Monthly DTI time course measurements of ON and OT after 4 n mole or 10 n mole of A β injections. There was no significant change caused by A β .

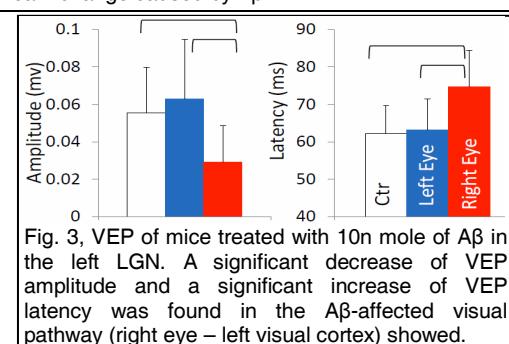


Fig. 3, VEP of mice treated with 10 n mole of A β in the left LGN. A significant decrease of VEP amplitude and a significant increase of VEP latency was found in the A β -affected visual pathway (right eye – left visual cortex) showed.