

Using the ADNI1 data set to assess the back-to-back reproducibility of brain volumetrics

Keith S Cover¹, Ronald A van Schijndel¹, Adriaan Versteeg¹, Alberto Redolfi², Jérôme Revillard³, Baptiste Grenier³, David Manset³, Hugo Vrenken¹, Bob W van Dijk¹, Giovanni B Frisoni², and Frederik Barkhof¹

¹VU University Medical Center, Amsterdam, Netherlands, ²IRCCS San Giovanni di Dio Fatebenefratelli, Italy, ³gnubila France, France

Purpose

To compare the reproducibility of the hippocampal atrophy rates over one year generated by the FreeSurer/ReconAll and FSL/FIRST software packages using a back-to-back (BTB) reproducibility test based on the ADNI1 data set [1].

Methods

While rarely mentioned in the literature, as part of the first Alzheimer's Disease Neuroimaging Initiative (ADNI1) study, the 3D T1-weighted MRI scans (also known as MPRAGE scans) were acquired in duplicate during each patient visit - with the acquisition of the second MPRAGE starting within seconds of completion of the first.

As ADNI1 has over 800 subjects - with an average of 6 visits each - spread over several years, roughly 9,000 back-to-back (BTB) MPRAGE were available to probe the performance of brain atrophy measures [1]. FSL/FIRST (fsl.fmrib.ox.ac.uk/fsl/fslwiki) and FreeSurfer/ReconAll (surfer.nmr.mgh.harvard.edu) are widely used as fully automatic measures of hippocampal atrophy from a pair of 3D T1 weighted MRI scans. Back-to-back (BTB) ADNI1 MPRAGE acquired at baseline (A) and 1 year (B) were used to calculate the BTB difference between the first acquired MPRAGE (M) at each patient visit from the second acquired (N). After taking the absolute value of the BTB differences, the 50 percentile was found and used as a statistic of reproducibility of the BTB difference. The full ADNI1 BTB benchmark, which was designed for this study, consisted of 562 subjects each with 6 MPRAGEs. The 6 MPRAGEs each consisted of 3 MPRAGEs of two patient visits at baseline (A) and 1 year (B). Each patient visit consisted of the two BTB "original" MPRAGEs (M & N) and a third "processed" MPRAGE (P) - which is one of the two original

Figure 1 Study design for the MPRAGE MRI scans in the ADNI1 study. For each patient visit ADNI selected one of the pair of original scans acquired for processing and official release.

MPRAGEs after additional processing by ADNI. As the computational time for ReconAll was about 200 times longer than for FIRST, a representative subset of 75 subjects was used for each of the 4 versions of FreeSurfer benchmarked. FIRST was calculated for both the 75 subjects and the full set of 562 subjects. When, occasionally, a subject's calculation yielded no output, the number of subjects value was correspondingly decreased. All FreeSurfer versions were run on the same Linux cluster.

Results

Table 1 presents the BTB reproducibility for FSL 5.0.4 and several versions of FreeSurfer. Comparison of FreeSurfer 5.2.0 and FSL 5.0.4 shows similar reproducibilities with FSL being slightly better for the left hippocampus and FreeSurfer 5.2.0 being slightly better on the right hippocampus. Assuming the FreeSurfer cross sectional performance is constant over its versions, the range of reproducibilities in cross sectional mode over the various versions gives a sense of the variation in the reproducibility statistic. The single FIRST version and the 4 versions of ReconAll do not exhibit significantly different reproducibility between the left and right hippocampus.

FSL/FIRST's execution time was about 200 times faster than ReconAll.

Discussion

The FSL/FIRST and FreeSurfer/ReconAll

reproducibilities of hippocampal atrophy rates are similar. The poor reproducibility of the well documented bug in longitudinal mode of FreeSurfer 5.0.0 is clearly evident. As the 75 subjects in the subset is a representative sample of the full 562 subjects in the benchmark, repeating the calculations for the full 562 is unlikely to yield substantially different results. While all the results are calculated here for the fully automated segmentation, it would be interesting to see if manual review of the segmentation changed the reproducibilities significantly.

Conclusions

FreeSurfer/ReconAll and FSL/FIRST yielded similar results in hippocampal reproducibility with the exception of the well documented bug in the ReconAll longitudinal mode of FreeSurfer 5.0.0. The ADNI1 based BTB benchmark presented for measuring the reproducibility of brain atrophy measures is a valuable way to compare performance of volumetric algorithms.

References 1) Cover KS, et al. Psychiatry Research: Neuroimaging. 2011;193:182.

Algorithm	Reproducibility of Hippocampal Atrophy Rates				N	
	Cross Sectional		Longitudinal			
	Left	Right	Left	Right		
FreeSurfer 4.5.0	2.41%	2.06%	2.01%	1.73%	75	
FreeSurfer 5.0.0	2.80%	3.20%	13.98%	13.89%	75-72	
FreeSurfer 5.1.0	2.38%	2.77%	2.31%	2.10%	75	
FreeSurfer 5.2.0	3.29%	2.93%	2.36%	1.71%	75	
FSL 5.0.4	2.19%	3.05%	N/A	N/A	74	
FSL 5.0.4	2.47%	2.87%	N/A	N/A	557	

Table 1. The reproducibility of hippocampal atrophy rates for FreeSurfer/ReconAll and FSL/FIRST using back-to-back (BTB) ADNI1 MPRAGEs MRI scans. Units are percentage difference in the atrophy rate over 1 year. Smaller is better.