

Opposite neural trajectories of Apolipoprotein E $\epsilon 4$ and $\epsilon 2$ alleles with aging associate with different risks of Alzheimer's disease

Hao Shu^{1,2}, Yongmei Shi¹, Gang Chen², Zan Wang¹, Duan Liu¹, Chunxian Yue¹, B. Douglas Ward², Wenjun Li², Zhan Xu², Guangyu Chen², Qihao Guo³, Jun Xu⁴, Shi Jiang Li², and Zhijun Zhang¹

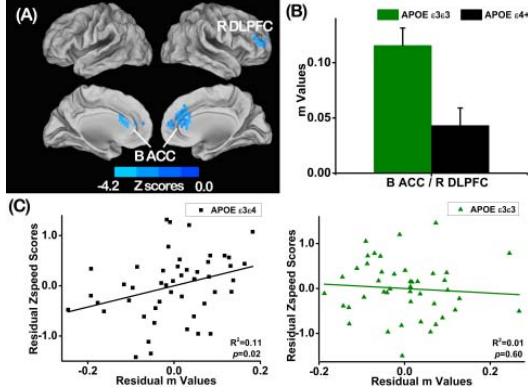
¹Neurologic Department of Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China, ²Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States, ³Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China, ⁴Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China

Target audience Researchers studied on translational medicine in neuroimaging and neurodegenerative disease.

Purpose Apolipoprotein E (APOE) $\epsilon 4$ allele is the confirmed genetic risk factor and APOE $\epsilon 2$ allele is the protective factor for Alzheimer's disease (AD). The altered brain functions detected by neuroimaging methods in cognitively normal APOE $\epsilon 4$ carriers have been linked to insidious AD development. However, recent studies have demonstrated the APOE $\epsilon 2$ allele has altered brain functions as in the case of the APOE $\epsilon 4$ allele, despite their opposite susceptibilities to AD¹⁻². Given aging is another established risk factor of AD, we hypothesize that aging could differently influence the effects of the APOE $\epsilon 2$ and $\epsilon 4$ alleles that contribute to their different AD risks.

Methods A total of 129 cognitively normal elderly, including 36 $\epsilon 2$ carriers, 44 $\epsilon 3$ homozygotes and 49 $\epsilon 4$ carriers, were recruited and underwent resting-state functional MRI scans (Siemens Verio 3.0T scanner). Individual posterior cingulate cortex functional connectivity (FC) network were established to represent the pattern of default mode network (DMN). Difference of DMN FC among groups with its cognitive significance was detected. Stepwise regression analysis was applied to examine how the altered DMN FC strengths are differently affected by aging and the years of education among the three APOE alleles.

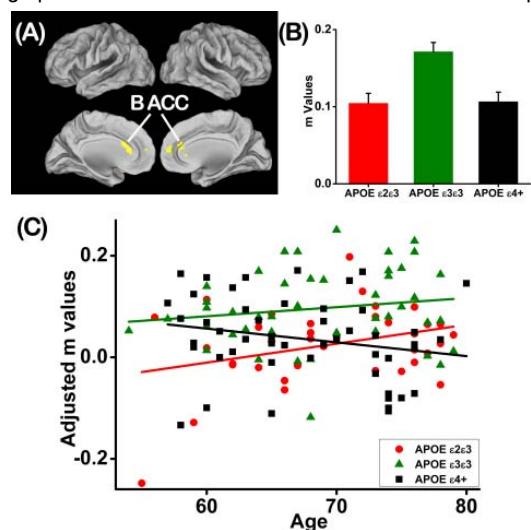
Results We observed the reduction of DMN FC occurred in both APOE $\epsilon 2$ and $\epsilon 4$ carriers compared with $\epsilon 3$ homozygotes (Figure 1A and 1B, Figure 2A and 2B). Behaviorally, the altered DMN FC positively correlated with information processing speed in both $\epsilon 2$ and $\epsilon 4$ carriers. Such a relationship

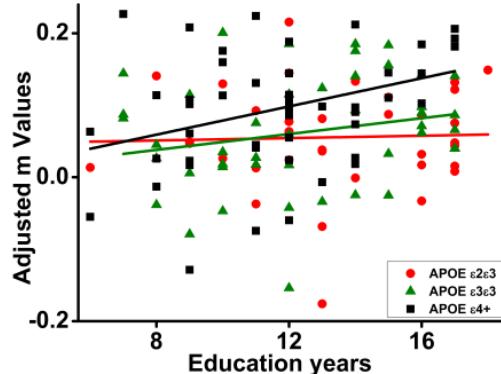

was not found in $\epsilon 3$ homozygotes (Figure 1C and 2C).

Bilateral ACC region showing decreased DMN FC in both APOE $\epsilon 2$ and $\epsilon 4$ carriers compared with $\epsilon 3$ homozygotes was identified (Figure 3A and 3B). With the stepwise regression analysis regarding $\epsilon 3$ homozygotes as the reference group, the model with APOE $\epsilon 2$, APOE $\epsilon 4$, APOE $\epsilon 2$ \times age interaction, APOE $\epsilon 4$ \times age interaction and education years provided the best prediction to the DMN FC value in this region (adjusted $R^2=0.185$, $p<0.0001$). Specifically, APOE $\epsilon 2$ and $\epsilon 4$ carriers have opposite trajectories

of FC changes with aging. Along with aging, $\epsilon 2$ carriers showed increased FC, while $\epsilon 4$ carriers exhibited decreased FC.

Further post hoc stepwise regression analysis with inclusion of the interactions between APOE status and education years revealed that the extent to which the effect of education years on the DMN FC values is different by APOE polymorphism, in addition to the effects of APOE genotype and age. Relative to APOE $\epsilon 3$ homozygotes, APOE $\epsilon 4$ carriers showed a significant increased slope ($\beta=0.002$, $p=0.001$), whereas $\epsilon 2$ carriers showed a decreased slope ($\beta=-0.002$, $p=0.02$).


Figure 1 Decreased DMN FC in APOE $\epsilon 2$ carriers with its significance in information processing speed.


Figure 2 Decreased DMN FC in APOE $\epsilon 4$ carriers with its significance in information processing speed.

Discussion and Conclusion In this study, our major new finding is that APOE $\epsilon 2$ and $\epsilon 4$ carriers have opposite trajectories of FC changes with aging in the DMN, primarily in the bilateral ACC regions, although both APOE $\epsilon 2$ and $\epsilon 4$ carriers showed similar decreased FC compared with $\epsilon 3$ homozygotes. These findings revised the previous conceptual framework of the neuroimaging characteristic of APOE polymorphism that the aging trajectories in brain function influence the susceptibilities to AD for different APOE alleles, in addition to their antagonistic pleiotropic effects of both APOE $\epsilon 2$ and $\epsilon 4$ carriers on the neural network activity in an opposite way to link their different risks for late AD onset³⁻⁴. Further, we proposed that age should be included as an important regulator when investigating the role of APOE polymorphism in the development of AD at neural system level.

References 1. Trachtenberg AJ et al. *Neurobiol Aging* 33: 618 e611-618 e613; 2. Trachtenberg AJ et al. *NeuroImage* 59: 565-572. 3. Han SD et al. *Alzheimer's & dementia* 4: 251-254. 4. Morris JC, et al. *Ann Neurol* 67: 122-131.

Figure 3 Opposite trajectories of DMN FC with aging between APOE $\epsilon 2$ and $\epsilon 4$ carriers.

Figure 4 Discrepant functional trajectories with education years among the three APOE alleles.