
Figure 1: connectivity network of 73 HS. Different colors 
correspond to different lobes. 

Figure 2: atrophy pattern in AD patients (two sample t-test)

Figure 4: Logit 
correlation R 
calculated 
between the 
diffusion model 
and the observed 
atrophy. Dashed 
line indicates 
maxima position. 

Figure 3: diffusion model seeded in the hippocampus
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Introduction 
Alzheimer’s Disease (AD) is a highly prevalent form of dementia whose precise pathophysiological mechanisms affecting both grey matter (GM) and white matter 
(WM) tissues are still largely unknown. So is the exact progression of the disease and a large body of research aims at finding not only the anatomical origin(s) of AD 
but also means of anticipating its course, since progress in both these axes would lead to potential breakthroughs in diagnostic, prognostic, and clinical trial assessment. 
In this work we model AD as a diffusion process on the brain connectivity network to allow estimating both the foci of the disease and its time course.  

Material & Methods 
Healthy subjects (HS) from whom was evaluated the reference connectivity network:  73 healthy subjects [F/M=33/40; 30.2 ± 6.7 years] 
Imaging data acquisition (for HS): acquired on a 3 T GE Signa EXCITE scanner as detailed in [1]. Diffusion MRI (dMRI) data were obtained along 55 isotropically 
distributed directions, with b values of 0 and 1000 s.mm-2 resulting in 72 contiguous 1.8 mm-thick slices with 0.9 x 0.9 mm2 in-plane resolution. T1 weighted sequence 
was a 3D fast spoiled gradient-recalled echo sequence (TE/TR = 1.5/6.3 ms) with 0.9 x 0.9 x 1 mm3 resolution. 
Reference connectivity matrix calculations:  T1 images were segmented in GM, WM and CSF tissue classes 
with GM being further parcellated according to the 116- region Automated Anatomical Labelling (AAL) atlas 
[1]. The N=90 cerebrum regions were kept and the 26 cerebellum regions discarded. For each HS the 
parcellated GM was then transformed to subject dMRI space where its interface with WM was used as seed for 
whole brain tractography as described in [2]. The strength connectivity ci,j of any pair of atlas regions {i,j} was 
calculated with the anatomical connection probability (ACP) formula [3] applied to the tracts interconnecting 
them. All the {ci,j} form a NxN connectivity matrix C=[ci,j]NxN which can be thought as the matrix 
representation of a network having for nodes and edges the atlas regions and their connectivity strengths 
respectively (Figure 1). The “healthy” reference connectivity matrix was taken as the mean of all HS 
connectivity matrices. 
GM atrophy patterns of AD patients: A two sample t-test between the 116-region GM volumes in 99 AD 
patients [F/M=39/60; 75.8 ± 7.1 years] and 95 normal controls (NC) [F/M=37/58; 74.5 ± 5.7 years] gave the 
atrophy metric vector A between AD and NC in the 90 cerebrum regions of the AAL atlas (Figure 2). AD and 
NC imaging data were all obtained from the AD Neuroimaging Initiative (ADNI) database with AD subjects 
simply chosen as those diagnosed as having AD.  
AD disease model and predicted state: AD was modeled as a diffusion process within the connectivity network such that a pathological agent in region i with 
concentration xi would diffuse to region j according to the agent concentration difference (xj-xi) and inter-region connection strength ci,j: dxi/dt = β ci,j (xj-xi) where β is a 
diffusivity constant. In vector form this equation becomes d x /dt = β L x where L is the graph Laplacian [4]. The predicted diffusion state at a time t given an initial 
state x0 is then given by x(t)=exp(-β L t) x0.  
Correlation between atrophy pattern and diffusion model: The aim was to evaluate which atlas region i provides the best match xseed i(t) to the atrophy pattern when it is 
chosen as the seed (i.e. such as xseed i(0)= i). Each region i of the cerebrum was therefore tested in turn as the initial state xseed i(0) and for each trial the correlation 
between the atrophy metric A and xseed i(t) was evaluated on a range of time t values (more exactly βt values, β being constant) large enough for xseed i (β t) to converge 
for all i. The maximum correlation Rseed i in this range occurred at time tmax when the diffusion state xseed i (tmax) 
best correlates with the atrophy state A (Figure 4). The regions i which provided the highest correlations Rseed i 
should be the foci of AD as according to the diffusion model. Note that the logit correlation was used:  
    Rseed i = max ( logit(xseed i(t))·A /(norm[logit(xseed i(t))] × norm[A]))   with the maximum taken over t 
Evolution of AD according to the diffusion model: the region i providing the maximum Rseed i was used as the 
initial state xseed i(0) to model the general diffusion of AD. 

Results 
Correlation between atrophy pattern and diffusion model: Out of the 90 cerebrum seed regions tested, the ones 
which provided the best match with the observed atrophy pattern were the left and right hippocampus 
(Rleft=0.48, Rright=0.45), left and right caudate (Rleft=0.49, Rright=0.47), left and right putamen (Rleft=0.44, 
Rright=0.42) as well as left amygdala (R= 0.43) – all at around the same time tmax (Figure 4). The ones with 
worse correlation (having their maximum correlation during the final steady state for which R ≈ 0.39) were 
superior and middle frontal gyri. 
Evolution of AD according to the diffusion model: When seeding from the hippocampus (Fig 3 – left), the 
course of AD as given by the diffusion model first spreads to mesial temporal lobe (Fig 3 – middle) before 
continuing to the frontal-temporal-parietal association areas (Fig 3 – right). 

Discussion and conclusion 
From a relatively simple diffusion model of AD, findings remarkably close to what is currently known of the disease were demonstrated. A large amount of evidence 
points to disease foci including the hippocampus and amygdala while frontal areas – among the worst seed candidates – have been indeed shown not to be foci but 
instead being affected last in AD progression. Furthermore atrophy of the caudate has been found to be presymptomatic to AD [5] while atrophy of the putamen was 
demonstrated to be significantly reduced in patients diagnosed with probable AD [6]. Interestingly, the left hemispherical part of the regions best predicting AD 
progression provided better correlation than their right counterpart. This is in line with the asymmetry reported in GM loss dynamics in AD [7]. The added result of the 
modeled AD progression mimicking the known time course of the disease (affecting the limbic lobe at early stages and the frontal lobe at later stages) gives support to 
pathophysiological mechanisms acting as a diffusion process. A crucial advantage of the proposed model is that it is deterministic. Not only can it assess likely AD foci 
by going back in time but importantly it can also estimate a later state for any given time point. If proved reliable and accurate, this model would be particularly useful 
for both prognostic and clinical trial assessment as it could both predict cognitive decline and quantify treatment-induced deviation from this anticipated decline. 
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