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Target audience: Basic scientists and clinicians with an interest in diffusion MRI, neuroscience, neuroimaging and oncology.

Purpose: Systemic chemotherapy treatment for breast cancer has been associated with cognitive dysfunction [1]. Furthermore, the dysfunction has been
shown to correlate with decreased fractional anisotropy (FA) and mean diffusivity (MD) in white matter [2]. The underlying pathology and evolution of
systemic chemotherapy-related neurobiological effects is unknown. The purpose of this follow-up study is to investigate brain microstructural changes
three years post-chemotherapy using multi-shell diffusion MRI and myelin water imaging.

Methods: Subjects: Recovering female breast cancer patients who received chemotherapy (C+, n=25) or did not receive chemotherapy (C-, n=14) and
healthy controls (HC, n=12). Imaging: DWIs were acquired (3T Philips Achieva) with b-values 700, 1000 and 2800 s/mm? along 25, 40 and 75 directions,
respectively. Multicomponent T2-relaxation data were acquired using a modified GraSE sequence [3]. Measures: Conventional diffusion tensor imaging
(DTI) and diffusion kurtosis imaging (DKI) parameters were estimated using ExploreDTI [4]. The fraction of isotropic fluid (FISO), the neurite density
index (NDI) and the orientation dispersion index (ODI) were calculated using the NODDI toolbox [5]. Relaxometry data yielded the myelin water fraction
(MWF), the intra- and extracellular water fraction (IEWF), geometric mean T2 time of the general T2 distribution (G-gmT2) and the IE water (IEW-gmT2)
and the width of the IEW-peak (IEW-pw) [6]. A population-based FA-template was constructed [7], to which all parameter maps were registered. Fiber
orientation distribution profiles (FODs) were calculated using MRtrix [8], and reoriented to the FA-template [9]. Tracts previously associated with
chemotherapy-related changes were delineated using constrained spherical deconvolution (CSD) [10]: cingulum, forceps minor, forceps major and the
superior longitudinal fasciculus (SLF). Parameter values of each subject were calculated in the tract masks in template space. Statistical analysis: Whole
tract: one-way ANOVA was used to investigate the main effect of group membership. Local difference: the group:position interaction term in a 2-way
ANOVA was used. A permutation method was applied to correct significant (p<0.05) findings for multiple comparisons [11]. To identify which groups or
positions caused significant differences in these F-tests, post-hoc t-tests were performed and corrected using Tukey’s honestly significant difference
criterion.
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Figure 1. P-values for each tract/parameter combination. Squares with a red border indicate significance after correction for multiple comparisons.

Results: Figure 1 illustrates the resulting p-values. The only parameter that significantly differed after correction for multiple comparisons was the
orientation dispersion index (ODI). ODI significantly increased in the right SLF (p=0.008) of the C+ group compared to HC. Both C+ and C- groups had
increased ODI in both left (p=0.008) and right (p=0.0001) cinguli, compared to HC, with additional local variations in the right cingulum. Furthermore, a
trend is visible towards whole tract differences of AK along the Fminor and right cingulum. However, these differences do not remain significant after
correcting for multiple comparisons. Figure 2 illustrates the significant tract/parameter combinations.
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damage may be diffuse rather than local.

The lack of findings from MWI parameters was
consistent with the lack of findings from NDI. These
parameters are concerned with the composition of tissue, while ODI reveals organizational changes, adding a unique dimension to the analysis.

Of all the parameters investigated, ODI appeared to be most sensitive for detecting long-term microstructural change following systemic chemotherapy.

Figure 2. Change in ODI across the length of the right SLF and bilateral cinguli, illustrating whole tract and
locally significant differences between groups. (red = C+, green = C-, blue = HC)
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