
7408
Accelerating MRI data analysis by using Matlab toolboxes and Linux cluster

Mingyi Li1, Erik Beall1, and Mark Lowe1
1Cleveland Clinic, Cleveland, Ohio, United States

Introduction:
MRI Neuroimaging research generally needs to handle a large amount of data. Besides demand of high storage, great CPU power

is also required to rapidly process data and generate results. Starting several years ago, the trend of boosting CPU performance has
shifted from increasing clock speed of a single CPU to integrating multiple cores into one CPU. In order to fully utilize multi-core
CPUs, parallelization is a must. Neuroimaging data intrinsically is easy to be paralleled because of possible data independence on the
voxel, volume and subject levels during the analysis process. However, the practical skill of using programming language, parallel
library and runtime environment could be beyond the expertise of many researchers.

One research project in our lab is to investigate a new measure similar to intrinsic connectivity distribution1 on brain fMRI data.
To obtain the measure, time series correlation of each voxel to all the other voxels on the brain gray matter needs to be calculated,
followed by Gaussian curve fitting of the distribution histogram. We developed a data analysis pipeline in Matlab2. It took about four
and half hours on average to generate the results for one dataset and five to six days for datasets of thirty subjects. Shorter turn-around
time was desired. As a solution, we used two levels of parallelization to cut the total running time. Matlab Parallel Computing
Toolbox (MPCT) was used to accelerate the computation on the single subject level. Then Matlab Compiler Toolbox (MCT) was used
to convert the parallelized Matlab code to executable binary code. Many copies of executable code could be run simultaneously on our
Linux cluster and the parallelization on multiple subjects’ level was achieved. The total running time was thus reduced to several
hours after the two levels of parallelization. Such parallelization methodology is relatively easy to be implemented and is also
applicable to a wide range of MRI data analysis. In this abstract, we will focus on the parallelization of data analyze pipeline. The
detailed description and neurophysiologic findings of the new intrinsic connectivity measure will be presented separately.
Methods:

RS-fMRI scans were acquired in 6 low-motion subjects using a bite-bar at 3 Tesla Siemens scanner. Data was corrected for
volumetric motion, physiologic noise and spatially filtered to 4mm FWHM. A T1 MPRAGE was also acquired and segmented to
provide gray matter (GM) mask. For each GM voxel, correlation of time series to all other GM voxels were computed and distribution
histogram was fitted to a Gaussian distribution. The area between the fitted Gaussian curve and actual distribution was calculated on
the tail of the curves.

Since the correlation calculation and curve fitting is independent for each GM voxel, using “parfor” to substitute “for” loop and
telling Matlab to use multiple CPUs would evoke the parallel functionality in MPCT. MCT provides two different targets: compiling
the Matlab script into a standalone application is straight forward; compiling Matlab function to shared library provides a more
flexible calling interface although it requires some C/C++ programming skill to write a wrapper. Executables generated from both
case can be run on computers or clusters without Matlab installation. But the free Matlab Compiler Runtime (MCR) environment must
be installed.

For benchmarking purpose, we used the same hardware platform and software environment to run the three different methods on
the 6 datasets. The computer is a DELL Precision T5500 workstation with dual Intel Xeon E5-2630 CPUs and 32GB of RAM. The
software environment is Matlab R2012a on CentOS Linux 6.4.
Results:

The running time for the subject dataset is shown in the table. The unit is in second. On average, 5.67 times of speedup is gained
when 12 CPU cores are used in MPCT. In our case, the speed of MCT compiled code run in MCR is very close to code run in Matlab.

Conclusion:
MRI data analysis can gain great boost in speed by using MPCT. If adequate computer power like cluster is available, MCT can

be used to generate binary code and data analysis for multiple subjects can be run simultaneously.
Discussion:

In Matlab R2012a, MPCT can support up to 12 CPUs. If a higher number of CPU is supported in the future, the computation time
will become even shorter when paralleled. The limitation of this study is the data analysis pipeline must be written in Matlab.
Reference:

1. Sheinost et al., NeuroImage, 2012
2. www.mathworks.com

method\subject 1 2 3 4 5 6 Ave±Std
1 CPU 16886 16027 12131 21174 14395 17752 16394±3074
12 CPUs MPCT 3057 2812 2106 3998 2474 3177 2889±651
12 CPUs MPCT+MCT 3114 2772 2064 3972 2473 3203 2933±660

Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 1875.

