
 
Fig.1: Depiction of the 
temporal tissue change:axial 
T2w FLAIR with previous 
(green), current(red) and 
overlap (yellow). 

 

Fig.2: Display of the color-coded time course of tumor volume change (color coding as defined in Fig. 1). Note the smooth 
transition from time point to time point and the comprehensive overview offered by these maps. 
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Target audience: Radiologists evaluating tumor growth. 

Purpose: Tumor growth is commonly monitored by following the tumor diameter. However, this is infeasible for glioblastomas that commonly feature erratic 
growth and unsharp margins [1]. Due to the complex shape and short observation interval, the changes in tumor volume from time step to time step may be 
subtle and progression can easily be overlooked, even more so as this task is highly challenging involving to revisit previous acquisitions to capture a 
sense of the progression. Often steady growth is only recognized after several subsequent examinations, when the progression becomes apparent. We 
present a method that aims at providing a compact overview of the history of a patient’s tumor development and highlight areas of potential change in the 
MRI. This may aid the neuroradiological diagnostic process by providing an intuitive visualization that reduces the complexity of the data and in which 
regions of interest are pin-pointed that are relevant for further investigation, thereby saving time and increasing sensitivity in detection of tumor 
progression. 

Methods: Twenty glioblastoma patients were included and followed with a mean of 10.5 follow ups per patient with a mean 
time between follow ups of 2.3 months. We used the T2w FLAIR for tumor segmentation (SIEMENS Aera 1.5T) with the 
following parameters: 21 slices with an in-plane voxel size of 0.625x0.625mm2 and 5mm slice thickness (1mm gap); 
TR/TE/TI=90/108/25 ms. For all patients and time steps, the gross tumor volume was manually segmented by an expert were 
resampled to a standard reference of 1x1x1mm3

 voxel size to account for the variety of different image resolutions present in 
the data set. In a second step, all images were registered to the first T2w image acquired of the according patient using a rigid 
registration algorithm of ITK [4]. Segmentations were interpolated using the shape-based method described in [3] and on the 
result the respective transformation was applied in order to minimize artifacts. All data of one patient was then visualized in a 
grid, where different slices of an MRI were represented as rows and different time points are represent by columns, providing 
a condensed view over the complete spatiotemporal course of the progression. The segmentations were overlayed via 
shifting reference: The segmentation of the previous time point was depicted in green and the current time point was depicted 
in red. The overlap between both was shown in yellow (c.f. Fig. 1).  
 
Results: Using the above described method we constructed progression maps for all 20 data sets to visualize the individual 
growth patterns. As can be taken from Fig. 2, the maps provide an intuitive visualization of the history of tumor volume 
changes where progression and shrinking are mapped as red and green respectively. However, not all indicated areas were 
caused by actual volume changes and occasionally reflect other effects such as topological changes due to surgery or 
segmentation inaccuracies. We found that these effects could easily be recognized by examining the original data sets. In Fig. 2, the maps resemble states 
before (t=0) and after (t=1) tumor resection as well as consecutive reduction of the post-operative edema (green area, t>1) and finally re-growth of the 
tumor (red area, t>1).  

Discussion: Progression maps 
provide an intuitive and compact 
visualization of the complex evolution 
of glioblastomas over time, thus 
reducing the complexity of the 4D 
data in a way that supports 
radiologists in their clinical routine of 
retracing changes in brain tissue due 
to several complex interactions such 
as treatment, edema and tumor 
growth. Furthermore, they may aid 
radiologists to recognize subtle 
growth patterns that can be easily 
overlooked. Currently there are two 
major limitations. First, strong effects 
on brain geometry (e.g. a resection) 
cannot be fully encompassed using a 
rigid registration and thus can lead to 
areas of misalignment and 
consecutive artifacts in the 
color-coded maps. Secondly, even 
though the shape-based 
interpolation of segmentations 
reduces artifacts, interpolation 
between thick slices is prone to 
errors and may also introduce artifacts to the maps. Therefore these maps have to be seen as overviews that highlight regions that should be considered 
with extra attention. 

Conclusion: Tumor progression maps are able to effectively summarize complex growth patterns and highlight subtle changes in tumor volume. 
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