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Introduction: The amygdala, a subcortical structure in the human brain associated with fear and emotion, appears as a small region of grey matter
using conventional T1W imaging despite a number of functionally distinct subnuclei that connect with different regions of the brain. Having an
accessible approach for imaging these subnuclei would be of great value for furthering the understanding of the amygdala. Two experlments have been
able to segment the amygdala into four distinct regions, one with manual segmentation using ultra-high resolution T1W imaging' and another using
diffusion tensor imaging (DTI) with probabilistic tractography®. Both experiments, however, used a priori knowledge for segmentation. To increase
accessibility and efficiency, it may be helpful to use a data-driven approach. Two other experiments used k- -means, clustering, an automated machine
unsupervised learning technique, on the diffusion tensor to segment the amygdala into a medial and lateral region® as well as a deep and superficial
region that corresponded to anatomical connectivity’. The present study uses High Angular Resolution Diffusion Imaging (HARDI), which accounts for
crossing fibers, as well as high spatial resolution with a voxel size of 1.6x1.6x1.6 mm°®. Spectral k-means clustering was used on the spherical harmonic
(SH) coefficients calculated from orientation distribution functions (ODF) of each amygdala voxel. We hypothesized that, compared to conventional DTI
approaches, these imaging methods would allow for segmenting finer structures of the amygdala.

Methods:

MRI Acquisition: High spatial resolution HARDI was performed on 32 healthy volunteers at a 3.0T Philips Achieva INTERA scanner with a 32-channel
head coil. The DW pulse sequence was SS-SE-EPI. MR imaging parameters: FOV=230mm, matrix size=144x144, voxel size=1.6x1.6mm, 22 slices
with thickness=1.6mm, TE/TR=79/3382ms, 4 repetitions. DW parameters: 5/A=21/39ms, one b-value=0s/mm? and 61 noncollinear DW directions at b-
value:10030 s/mm?®  Other imaging protocols included a T1W image, a fieldmap sequence and whole brain coverage HARDI with cubic voxel size of
2x2x2mm®.

Data processing: Each volume of the DW images of the high spatial HARDI were motion-, eddy current-, and fieldmap-corrected before being
averaged over the four repetitions. In the diffusion space, the structural ODF profiles of the amygdala were computed using in-house MATLAB
programs with Q-ball Imaging (QBI)° algorithms on the averaged HARDI data. SH coefficients of each ODF profile were extracted up to an order of 6,
i.e., Inx=6. Only coefficients of even orders (total 28 SH coefficients) were entered into the subsequent spectral clustering. The amygdala probability
mask was first obtained from the Harvard-Oxford subcortical structural Atlas in the MNI152 standard space and then warped to the subject diffusion
space using FSL-FNIRT nonlinear registration.

Spectral clustering: The similarity matrix, S, was computed using the following algorithm S;; = exp (—sin ( )/sigma ) where C is the distance

matrix of the SH coefficients across voxels within the amygdala. The distance matrix was based on pair-wise Pearson s correlation coefficient, weighted
by the corresponding voxel mutual euclidean distance. We then transformed the similarity matrix into normalized symmetric laplacian matrix, and
performed eigendecomposition on the laplacian matrix. Next, we created a null distribution of eigenvalues of the laplacian matrix by randomizing the SH
coefficients (bootstrapping 1200 iterations). Eigenvalues of the Laplacian matrix based on data were tested against the null distribution using zscoring.
We determined the number of significant eigenvalues to be the number of clusters, denoted as N. The k-means clustering with correlation distance was
then applied on the first N eigenvectors. Lastly, clusters were averaged across subjects (n=32) and checked for consistency.

Results: In this study, consistantly three eigenvalues of the Laplacian transformed similarity matrix were found to be statistically significant across 32
subjects with p < .001. Therefore, three was the optimal cluster number for this study and included the following regions: medial (red), posterior-
superior-lateral (green), anterior-inferior-lateral (blue). The ODF profiles of the right amygdala with various orientations, shapes, and peaks are shown in
Fig. 1. The ODFs were overlaid on the results of the clustering algorithm from one subject on an axial slice. Fig. 2 shows the similarity matrix of the SH
coefficients of the ODF profiles for the left amygdala. A 3D scatter plot of the center of masses of each cluster across subjects for the left amygdala is
shown in Fig 3. Fig. 4 shows the consistency map of clusters across subjects overlaid on axial, coronal, and saggital T1W slices for the left amygdala,
clearly showing three clusters.

Discussion and Conclusions: This study showed that with higher angular resolution diffusion imaging and higher spatial imaging resolution we are
able to segment amygdala into three clusters. The automated clustering used only structural information within the amygdala and did not require prior
knowledge of amygdaloid structure' and of cortical functional projections of amygdaloid subnuclei®. Further study will incorporate probabilistic
tractography to link each cluster to functionally relevant cortical regions as well as high resolution TIW and Susceptability Weighted Imaging (SWI) to
identify the subnuclei within each cluster.
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Neurolmage 2010; 49(4): 2958 2965. 4. Bach et al., J Neurosci 2011; 31(2):618-623. 5. Luxburg, Stat Comput 2007; 17(4):395-416. 6. Tuch, MRM 2004;
52(6):1358-1372.
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Fig. 3: Left amygdala 3D scatter plot of
cluster center of masses across

consistency map of
k=3 clusters across
1l subjects in coronal
(top-left), axial
(bottom), and sagittal
J (top-right) views.

Fi.g. 1: Right amygdala (axial) Fig. 2: Left amygdala
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one subject. Three distinct regions are Oriented to match with coronal view in
noticeable. Red suggests Fig. 4
high similarity. '
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