
3646 
Automated Segmentation of the Human Amygdala using High Angular Diffusion Imaging (HARDI) and Spectral k-means 

Clustering 
Brian David Stirling1, Yu-Chien Wu1, Long Sha1,2, Jim Haxby1, and Paul J Whalen1 

1Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States, 2Neuroscience Institute, New York University, New York, NY, United States 
 

Target Audience: Neuroscientists, Psychologists, Psychiatrists, MRI scientists interested in diffusion imaging, Clinicians whose research focuses on 
amygdala.  
Introduction: The amygdala, a subcortical structure in the human brain associated with fear and emotion, appears as a small region of grey matter 
using conventional T1W imaging despite a number of functionally distinct subnuclei that connect with different regions of the brain.  Having an 
accessible approach for imaging these subnuclei would be of great value for furthering the understanding of the amygdala.   Two experiments have been 
able to segment the amygdala into four distinct regions, one with manual segmentation using ultra-high resolution T1W imaging1 and another using 
diffusion tensor imaging (DTI) with probabilistic tractography2.  Both experiments, however, used a priori knowledge for segmentation.  To increase 
accessibility and efficiency, it may be helpful to use a data-driven approach.  Two other experiments used k-means clustering, an automated machine 
unsupervised learning technique, on the diffusion tensor to segment the amygdala into a medial and lateral region3 as well as a deep and superficial 
region that corresponded to anatomical connectivity4.  The present study uses High Angular Resolution Diffusion Imaging (HARDI), which accounts for 
crossing fibers, as well as high spatial resolution with a voxel size of 1.6x1.6x1.6 mm3.  Spectral k-means clustering was used on the spherical harmonic 
(SH) coefficients calculated from orientation distribution functions (ODF) of each amygdala voxel.  We hypothesized that, compared to conventional DTI 
approaches, these imaging methods would allow for segmenting finer structures of the amygdala. 
Methods: 
MRI Acquisition:  High spatial resolution HARDI was performed on 32 healthy volunteers at a 3.0T Philips Achieva INTERA scanner with a 32-channel 
head coil.  The DW pulse sequence was SS-SE-EPI.  MR imaging parameters: FOV=230mm, matrix size=144x144, voxel size=1.6x1.6mm, 22 slices 
with thickness=1.6mm, TE/TR=79/3382ms, 4 repetitions.  DW parameters: δ/Δ=21/39ms, one b-value=0s/mm2 and 61 noncollinear DW directions at b-
value=1000 s/mm2.  Other imaging protocols included a T1W image, a fieldmap sequence and whole brain coverage HARDI with cubic voxel size of 
2x2x2mm3.  
Data processing:  Each volume of the DW images of the high spatial HARDI were motion-, eddy current-, and fieldmap-corrected before being 
averaged over the four repetitions.  In the diffusion space, the structural ODF profiles of the amygdala were computed using in-house MATLAB 
programs with Q-ball Imaging (QBI)6 algorithms on the averaged HARDI data. SH coefficients of each ODF profile were extracted up to an order of 6, 
i.e., lmax=6.  Only coefficients of even orders (total 28 SH coefficients) were entered into the subsequent spectral clustering.  The amygdala probability 
mask was first obtained from the Harvard-Oxford subcortical structural Atlas in the MNI152 standard space and then warped to the subject diffusion 
space using FSL-FNIRT nonlinear registration.  

Spectral clustering:  The similarity matrix, S, was computed using the following algorithm ௜ܵ௝ ൌ exp ቀെ݊݅ݏଶሺ௖௢௦షభሺ஼೔ೕሻଶ ሻ/ܽ݉݃݅ݏଶቁ, where C is the distance 

matrix of the SH coefficients across voxels within the amygdala.  The distance matrix was based on pair-wise Pearson’s correlation coefficient, weighted 
by the corresponding voxel mutual euclidean distance.  We then transformed the similarity matrix into normalized symmetric laplacian matrix, and 
performed eigendecomposition on the laplacian matrix.  Next, we created a null distribution of eigenvalues of the laplacian matrix by randomizing the SH 
coefficients (bootstrapping 1200 iterations). Eigenvalues of the Laplacian matrix based on data were tested against the null distribution using zscoring. 
We determined the number of significant eigenvalues to be the number of clusters, denoted as N.  The k-means clustering with correlation distance was 
then applied on the first N eigenvectors.  Lastly, clusters were averaged across subjects (n=32) and checked for consistency. 
Results: In this study, consistantly three eigenvalues of the Laplacian transformed similarity matrix were found to be statistically significant across 32 
subjects with p < .001.  Therefore, three was the optimal cluster number for this study and included the following regions: medial (red), posterior-
superior-lateral (green), anterior-inferior-lateral (blue).  The ODF profiles of the right amygdala with various orientations, shapes, and peaks are shown in 
Fig. 1.  The ODFs were overlaid on the results of the clustering algorithm from one subject on an axial slice.  Fig. 2 shows the similarity matrix of the SH 
coefficients of the ODF profiles for the left amygdala.  A 3D scatter plot of the center of masses of each cluster across subjects for the left amygdala is 
shown in Fig 3.  Fig. 4 shows the consistency map of clusters across subjects overlaid on axial, coronal, and saggital T1W slices for the left amygdala, 
clearly showing three clusters. 
Discussion and Conclusions: This study showed that with higher angular resolution diffusion imaging and higher spatial imaging resolution we are 
able to segment amygdala into three clusters.  The automated clustering used only structural information within the amygdala and did not require prior 
knowledge of amygdaloid structure1 and of cortical functional projections of amygdaloid subnuclei2.  Further study will incorporate probabilistic 
tractography to link each cluster to functionally relevant cortical regions as well as high resolution T1W and Susceptability Weighted Imaging (SWI) to 
identify the subnuclei within each cluster. 
References: 1. Entis et al., NeuroImage 2012; 60(2):1226-1235. 2. Saygin et al., NeuroImage 2011; 56(3):1353-1361. 3. Solano-Castiella et al., 
NeuroImage 2010; 49(4):2958-2965. 4. Bach et al., J Neurosci 2011; 31(2):618-623. 5. Luxburg, Stat Comput 2007; 17(4):395-416. 6. Tuch, MRM 2004; 
52(6):1358-1372.  

Fig. 2: Left amygdala 
similarity matrix for k=3. 
Three distinct regions are 
noticeable. Red suggests 
high similarity. 

Fig. 1: Right amygdala (axial) 
with ODF overlaid on T1W for 
one subject. 

Fig. 3: Left amygdala 3D scatter plot of 
cluster center of masses across 
subjects.  Coordinates are by voxels.  
Oriented to match with coronal view in 
Fig. 4 

Fig. 4: Left amygdala 
consistency map of 
k=3 clusters across 
subjects in coronal 
(top-left), axial 
(bottom), and sagittal 
(top-right) views. 
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