14 T NMR and 7 T MRI in vitro investigation of cold stimulation of abdominal WAT, inguinal WAT and BAT Alexander Brunner¹, Daniela Strzoda², Karel D. Klika³, Mathies Breithaupt¹, Vanessa Stahl¹, Stephan Herzig², and Armin M. Nagel¹ Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, ²Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany, ³Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany **PURPOSE:** Based on its unique thermogenic capacity, brown adipose tissue (BAT) shows very high potential to serve as a therapeutic node in the treatment of metabolic disorders, e.g., obesity. Recently, the BOLD effect T2*-weighted MRI during cold stimulation was used to detect cold-activated BAT in human individuals [1]. In this work, we compared 14 T NMR spectra and, for the first time, water fat fraction (WFF) [2], T1, T2 values measured *in vitro* by 7 T MRI between BAT, inguinal white adipose tissue (iWAT) and abdominal white adipose tissue (aWAT) in cold-stimulated mice and normal mice. ## MATERIALS AND METHODS: Tissue Preparation: Wild-type C57Bl6 mice (Charles River Laboratories, Koeln, Germany) were housed at room temperature (22°-24°C). Half of the animals (n = 8-10) were kept at 4°C for two weeks prior to pooling to stimulate thermogenesis. BAT, iWAT and aWAT were surgically removed from mice, pooled and washed with D₂O (MSD Isotopes, Montreal, Canada). Tissue probes were measured immediately after preparation (for sample denotation see Fig. 1). NMR Spectroscopy: ¹H NMR spectra were acquired using a Bruker Avance II NMR spectrometer (Bruker, Karlsruhe, Germany) equipped with a 5-mm inverse-configuration probe at a field strength of 14.1 T. Mouse fat samples were partitioned into small pieces to be easily introduced into the 5-mm NMR tubes with some D₂O filling the void spaces for lock and shim purposes. Spectra were referenced externally to trimethylsilyl propanoic acid (δ = 0 ppm). WFF_{14T} was calculated from the magnitude ratio of the water peak to the fat peak. Relaxometry and Water Fat Fraction Images: Datasets for T1, T2 and WFF determination were acquired on a 7 T whole body system (Magnetom 7 T, Siemens Healthcare, Erlangen, Germany) using a 24-channel head coil (Nova Medical, Wilmington, MA, USA). Data evaluation was done with MATLAB (The MathWorks, Natick, AM, USA). For T1, T2 values a non-linear least-squares curve fitting of the signal functions (see below, M_0 = magnetization, N = noise) to every image pixel was employed. Statistical analysis was done using R (R Foundation for Statistical Computing, Vienna, Austria). - T1: standard inversion-recovery spin-echo (IRSE) sequence; imaging parameters: TR = TI_n + 3000 ms, TE = 13 ms, TI_n = 40/60/80/100/130/160/190/230/20/320/370/440/530/660/900 ms, $\alpha = 90^{\circ}$, slice thickness = 10 mm, FOV = 96×128 mm², matrix = 96×128 , BW = 797 Hz/px; signal function: $S_{IRSE} = M_0(1 (1-\cos\alpha)e^{-TI/T1} + e^{-TR/T1}) + N$ - T2: standard CPMG sequence; imaging parameters: TR = 3000 ms, TE_n = n × 14.8 ms, $\{ \boldsymbol{n} \in \mathbb{N} | \boldsymbol{1} \leq \boldsymbol{n} \leq \boldsymbol{32} \}$, $\alpha = 180^\circ$, slice thickness = 10 mm, FOV = 96 × 128 mm², matrix = 96 × 128, BW = 797 Hz/px; signal function: $S_{CPMG} = M_0 \cdot e^{-TE/T2} + N$ - Fat and water images were measured by a Dixon-VIBE pulse sequence. Imaging parameters: TR = 13.9 ms, TE_{in}/TE_{opp} = 3.06/5.61 ms, α = 15°, slices = 35, slice thickness = 0.3 mm, FOV = 185 × 185 mm², matrix = 512 ×512, BW = 425 Hz/px. Fat pixels were selected from the image slices by histogram-based thresholding and subsequently, WFF_{7T} was calculated. **RESULTS AND DISCUSSION:** Based on the 14 T NMR spectra (cf. Fig 2), there is a difference for WFF_{14T}(BRT) = 47% to WFF_{14T}(B4C) = 83% and for WFF_{14T}(IRT) = 36% to WFF_{14T}(14C) = 50% indicating cold-activation. In contrast, WFF of aWAT remains unchanged (WFF_{14T}(ART) = WFF_{14T}(A4C) = 30%), i.e., there is no cold-activation. A significant change in T1-values by cold-stimulation was only observed for BAT (T1(BRT) = 61 ms vs. T1(B4C) = 76 ms, p-value < 0.05, cf. Tab. 1). Hence, cold-stimulation in iWAT could not be confirmed by T1 relaxometry. Differences in T2 values of all mouse fat samples were found to be very small (\leq 15 ms) and therefore do not allow to detect cold-stimulation. For 7 T MRI, a trend to higher mean value differences between WFF_{7T}(BRT) and WFF_{7T}(B4C) was observed similarly to 14 T NMR (cf. Fig. 2 and 3). For iWAT and aWAT, no difference in WFF_{7T} was measured. However, the noise of the data prevents an unambiguous statement. This measurement needs to be repeated, using larger mouse fat samples and/or human individuals. **CONCLUSION:** We successfully demonstrated the possibility to detect cold stimulation of BAT in mice with standard 14 T NMR and 7 T MRI *in vitro* measurements. This information can be used for further experiments in mice and/or human individuals similar to previous studies [1]. **REFERENCES:** [1] Y-C I Chen et al., *J. Nucl. Med.*, 54(9):1584-1587 (2013) [2] H H Hu et al., *Magn. Reson. Imaging*, 30(3):323-329 (2012) **Fig. 1:** Photo of the tissue samples. B4C/I4C/A4C denote BAT/iWAT/aWAT pooled from cold-stimulated mice kept at 4°C, BRT/IRT/ART from normal mice kept at room temperature. **Fig. 2:** 14 T NMR spectra of all mouse fat tissue samples. W and F indicate the peaks used for WFF determination which was done by division of the peak maximum values: $WFF_{14T} = 100 \cdot W/F$ | T1[ms] | 4C | RT | p-value | |--------|--------|--------|---------| | В | 411±69 | 373±45 | 0.008 | | I | 433±20 | 434±23 | 0.665 | | Α | 431±31 | 426±21 | 0.114 | **Tab. 1:** Mean T1 values of all mouse fat tissue samples with standard deviation. The last column indicates p-values from a two sample Student's ttest between fat tissue of cold-stimulated and normal mice. **Fig. 3:** Histogram of the WFF_{7T} values of the BAT samples from cold-stimulated and normal mice. The dotted lines mark the mean values of the distributions. This work was funded by the Helmholtz Alliance ICEMED - Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Networking Fund of the Helmholtz Association.