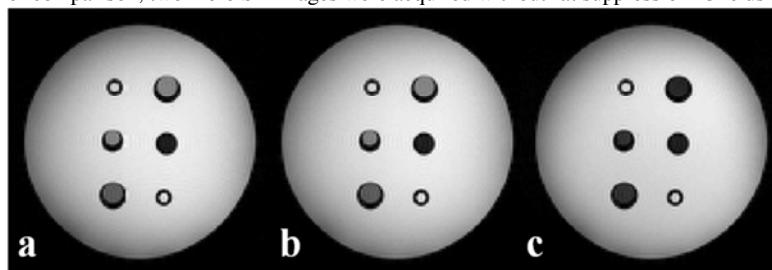
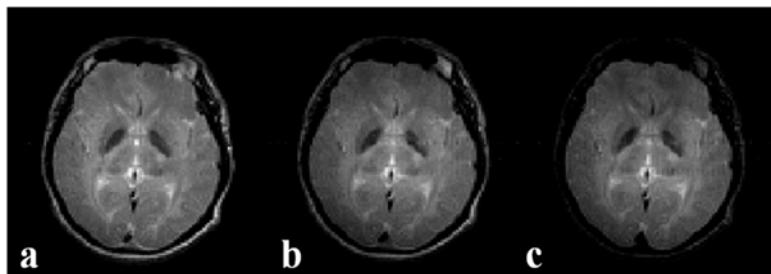


A New Fat-suppressed Spin-Echo Imaging Using Hyperbolic-Secant Pulses


Yoojin Lee¹, Jang Yeon Park², Yeji Han³, ChangHyun Oh³, and HyunWook Park³

¹Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States, ²School of Biomedical Engineering, Konkuk University, Chungju, Korea, ³Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea


Target audience: Researchers in water/fat separation

Purpose: Fat-suppression techniques are extensively used in clinical applications to reduce the fat-related issues such as chemical shift, motion, and dynamic range problems. Among many fat-suppression techniques, the methods based on selective saturation¹ and inversion recovery (IR)² have been most widely used. However, both selective saturation and IR techniques have some limitations because they require additional RF pulses and an increased scan time. In case of spin-echo (SE) based sequences, gradient reversal technique³ can be used as it offers a better performance without additional RF pulses or scan time. In this study, we propose a new fat-suppressed spin-echo imaging technique, which simply uses the original hyperbolic secant (HS) RF pulses for $\pi/2$ excitation and π refocusing in a conventional SE sequence without any sequence modification or using additional RF pulses.

Methods: When HS pulses are used for $\pi/2$ excitation and π refocusing in the SE sequence, non-linear phase variation is produced by each HS pulse across the slice-selective direction and it needs to be compensated to avoid a signal loss. The previous work done by J-Y Park et al. provides general conditions for the non-linear phase compensation⁴. One of the general conditions is to satisfy $[T_{p1} = T_{p2}, BW_1 = 2BW_2, \text{ and } G_1 = 2G_2]$, where T_p is a pulse length, BW is a pulse bandwidth, and G is the amplitude of a slice-selective gradient. Subscripts 1 and 2 indicate $\pi/2$ excitation and π refocusing, respectively. The sequence diagram satisfying this condition is presented in Fig. 1. When using this condition, however, the non-linear phase compensation cannot be fully achieved with the existence of a frequency offset (δ) arising from some sources other than the field gradient such as chemical shift and B_0 inhomogeneity. The remaining phase variation increases as δ/BW_2 increases and, thus, the signal loss takes place in the voxels having the frequency offset δ . Besides, a slice mismatch also occurs between $\pi/2$ excitation and π refocusing in the presence of δ , yielding an additional signal loss. Figure 2 shows the signal loss as a function of δ/BW_2 , considering the remaining phase variation as well as the slice mismatch. At this stage, we can come up with an idea that this signal loss can be used for suppressing the signals from fat components having a chemical shift of $\delta = 3.5$ ppm if the bandwidths of HS pulses are properly determined. To verify the proposed fat suppression technique, both phantom and *in vivo* experiments were performed using a 3T MRI system (ISOL technology, Korea) with the following parameters: TE/TR = 30ms/300ms for phantom imaging and TE/TR = 90ms/700ms for *in vivo* imaging, FOV = 256×256 mm², matrix size = 256×256, and slice thickness = 5 mm. The $\pi/2$ and π HS pulses were used with $T_{p1} = T_{p2} = 8$ ms and $BW_1/BW_2 = 2.5$ kHz/1.25 kHz. For comparison, two more SE images were acquired without fat suppression: One using sinc pulses with $T_p = 8$ ms.

Figure 3. Phantom SE images using (a) sinc pulses, (b) HS1 pulses with $[T_{p1} = T_{p2}]$, and (c) HS1 pulses with $[BW_1 = 2BW_2, G_1 = 2G_2]$ from (d) a custom-made phantom.

Figure 4.
In vivo SE images acquired using (a) sinc pulses, (b) HS pulses with $[T_{p1} = T_{p2}]$, and (c) HS pulses with $[BW_1 = 2BW_2, G_1 = 2G_2]$.

Conclusions: A new fat-suppressed

spin-echo imaging technique was suggested and its performance was successfully demonstrated by phantom and human brain imaging. The proposed technique is appealing in that additional RF pulses or any sequence modification is not needed. Furthermore, a high degree of tolerance to B_1 inhomogeneity and excellent slice selection of the HS pulse would be another benefit of the proposed techniques.

References: 1. Rosen BR, Wedeen VJ, Brady TJ. Selective saturation NMR imaging. *J Comput Assist Tomogr* 1984;8:813–818. 2. Bakker, C.J.C et al. Restoration of signal polarity in a set of inversion recovery NMR images. *IEEE TMI* 1984; 3:197-202. 3. Park HW et al, Gradient reversal technique and its applications to chemical shift related NMR imaging. *MRM* 1987; 4(6):526-36. 4. Park J-Y et al, Spin-echo MRI using $\pi/2$ and π hyperbolic secant pulses. *MRM* 2006; 55:848-857.