
Table 1 – Absolute relative errors for the PSF
peak position estimated with under-sampled 
data compared to fully-sampled acquisition
(median over brain pixels). Mean value and
range observed for the three subjects. 

Figure 1: Maps of the PSF shifts (in pixels) estimated with: A) 2; B) 3; C) 4; D) all 95 ks.

1693 
EPI distortion correction using highly under-sampled point-spread function estimation based on Finite Rate of Innovation 

Rita G. Nunes1,2 and Joseph V. Hajnal2,3 
1Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal, 2Division of Imaging Sciences and Biomedical 

Engineering, King's College London, London, United Kingdom, 3Centre for the Developing Brain, King's College London, London, United Kingdom 
 

Target audience: People using Echo-planar Images, particularly if acquired at high magnetic fields (3.0T and higher), who wish to correct for geometric distortions. 
Purpose: Echo-planar images (EPI) present geometric distortions due to static B0 field inhomogeneities. Several approaches have been developed for correction 
including direct B0 [1] and Point Spread Function (PSF) mapping [2]. To measure the PSF, an extra encoding gradient (Gs) is added in the phase encode direction prior 
to the EPI readout. This gradient is associated with another k-space (ks) which spatially encodes the PSF along undistorted spatial coordinates s. To map the PSF, the 
standard EPI sequence is repeated while incrementing Gs, allowing sampling of ks. Although PSF correction has been shown to be more robust compared to B0 
mapping [3], long acquisition times have limited its application. Previous approaches to accelerate PSF mapping include Parallel Imaging (PPI) [4], reduced field of 
view (rFOV) acquisitions [5,6], or using a Dictionary Learning compressed sensing framework to recover the full PSF shape [7]. Even when achieving high 
acceleration factors (10 or more), a minimum number of 10 PSF phase encoding samples was required, despite the fact that most PSF distortion correction schemes take 
into account only the position of the PSF peak. If only this information is required and the PSF can be described by a dominant peak in s-space, then the Finite Rate of 
Innovation framework [8,9] should be applicable. Signals with a finite rate of innovation typically have only a number of discrete events within a given measurement 
interval. In this case there is one event, the PSF within the FOV. We therefore seek a single delta function that matches the  
peak location and aim to determine its position to sub-pixel precision using as few ks samples as possible. 
Theory: To determine the position of the PSF peak, pattern matching is performed. Taking into account the employed ks 
sampling scheme, the measured signal Sig(r,ks) at each spatial location r is compared to a predicted signal pattern 
f(s,ks)=exp(i2πsks) (corresponding to a delta function centered at s in the PSF spatial domain) by calculating their 
normalised cross correlation, Ncc (Equation 1). Using a simple search strategy the PSF peak location is identified by 
maximising Ncc(s). Initially a set of candidate s are evaluated in integer pixel units. The search is then progressively 

refined by defining new sets of s centred on the last estimated location 
but at finer spacing. The number of iterations is set by the intended 
precision.  
Methods: Images were acquired on three volunteers on a 3.0T Philips 
Achieva. Image resolution 2.5×2.5×4.0 mm3, matrix 96×95, 95 PSF 
encoding steps (PSF and EPI with matched FOVs), 24 slices, TE/TR 
= 35/3000 ms. An EPI image was reconstructed using the non-PSF 
encoded repeat, while a gradient echo (GE) image was obtained by 
taking all central lines of the EPI readout. Under-sampling was 
retrospectively performed along the PSF encoding direction using just 2-4 samples, with the sampling locations selected following a Monte Carlo simulation study: 2 
samples (ks=0, 1 ∆ks), 3 samples (ks= 0, 1, 4 ∆ks), 4 samples (ks= 0, 5, 13, 25 ∆ks), where ∆ks is the ks step size used in the acquisition. For each voxel in the images, the 
position of the PSF peak was estimated using both the fully-sampled and highly-undersampled data. The fully-sampled data was zero-filled by a factor of 1000, and the 
PSF peak determined in image-space to a precision of 0.001 pixel units. To undistort the EPI images, the procedure described in [10] was performed. 

Results: Example maps of the estimated PSF peak shifts (relative to the expected undistorted positions) are shown in 
Figure 1 for all tested sampling schemes. The median absolute relative errors over the whole brain were quantified 
using the fully-sampled data as reference – Table 1. Figure 2A shows the original EPI slice matching Figure 1, and 
Figures 2B-E show the corrected images using each displacement map. Comparison with the GE image (Figure 2F) 
confirms that accurate geometrical corrections were achieved in each case.  
Discussion and Conclusions: Using the proposed approach it is possible to estimate the position of the PSF peak 
from a very small number of PSF samples (one of which can be acquired at ks=0 corresponding to the standard EPI 
acquisition). The implication is that, in the future, distortion map estimation using the PSF method could easily be 
incorporated into standard preparation phases. 

Figure 2: A) EPI image (with corresponding outer contour in yellow); Undistorted EPI images estimating the displacement field from: B) 2; C) 3; D) 4 and E) all 95 ks 
samples and F) GE image (corresponding outer contour in yellow propagated to all undistorted EPI images).  
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Equation 1: Normalized Cross-
Correlation, where ccSig and ccf 
representing the auto-correlation 
functions for Sig(r,ks) and f(s,ks). 

# ks 
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abs. error 
(%) 

2.8 
1.6- 4.5 

0.97 
0.71-1.20 
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0.43 – 0.54 
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