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Target Audience: MR mathematicians, physicists and engineers, and clinicians who want to deepen their understanding of undersampled MRI 
reconstruction techniques. 
 
Introduction: In Compressed Sensing (CS), setting the regularization parameter λ, i.e. the trade-off between data consistency and penalization, has 
been a widely studied topic in MRI. Nowadays, λ is a fixed number that penalizes the whole reconstructed image. However, the current approach is 
not always accurate in MRI. To improve the traditional framework for image reconstruction, we propose a CS technique with variable weight, which 
penalizes the pixels of the recovered image according to their magnitude [1]. Pixels are sorted in descendent order according to its magnitude and are 
penalized with a non-increasing sequence of regularization parameters. The main contribution of this work is in high order images, e.g. volumetric 
brain images, where choosing a variable weight may lead to poor sparse representation, when the ideal image is sparse [1]. Herein, we present 
quantitative susceptibility map (QSM) reconstructions in in-vivo data, where the Sorted Compressed Sensing (SCS) produced results that demonstrate 
it is feasible to reconstruct high quality images. The proposed method produced gains up to 3-4 dB with respect of traditional CS. 
  
Theory: To quantify tissue magnetic susceptibility, χ maps, the system of linear equations:           
b = F–1 DFχ + e must be solved; where ܊ ∈ Թ௉ is the normalized field map, D is the susceptibility 
kernel in k-space, F is the Fourier transform operator and χ ∈ Թே is the susceptibility vector and ܍ ∈ Թ௉ is the acquisition noise [2]. This is an ill-posed problem, because D undersamples the 
measured field [3]. In a SCS framework, χ map recovery is as follows: 
 ߯̂ ൌ arg	minఞ∈Թಿ ଵଶ||	۴ି૚۲۴߯	 െ ℓమଶ||	܊	 ൅  ,ℓభ‖߯ߖ߉‖
 
where ߉ is a diagonal matrix with the sorted regularization parameters on its diagonal, i.e. ߉௞,௞ ൌ  ௞; and Ψ is a wavelet transform operator that includes the sorting function. To set theߣ
sequence ߣ௞ with ݇ ∈ 	 ሼ1, … , ܲሽ, we first may consider the Benjamini-Hochberg (BHq) 

procedure [4]: ߣ௞ ൌ ஻ுሺ݇ሻߣ ൌ ଵିߔ ቀ1 െ ௞ఏଶకቁ, where ିߔଵሺ݊ሻ is the nth quantile of the standard 

normal distribution, ߠ is a fixed parameter in [0,1] and ߦ is the number of non-zero coefficients 
of ߯ߖ. However, this approach can be improved by considering the increase in variance of the 
model [1].  Therefore, the sequence begins with ߣଵ ൌ ݇ ஻ுሺ1ሻ and then, forߣ ൐ 1, we compute 
the corrected values as follows: 
௞ߣ  ൌ ஻ுሺ݇ሻඨ1ߣ ൅ ∑ ஻ுଶߣ ሺ݆ሻ௝ழ௜ܰ െ ݇ 	. 
 
Methods: To test the proposed framework, we reconstructed the susceptibility χ map from 
numerical phantom and noisy in-vivo field maps using CS and SCS techniques. For numerical 
phantom, we defined three regions: gray matter (χ = 0.027 ppm), cerebrospinal fluid (χ = −0.018 
ppm) and white matter (χ = −0.023 ppm). In-vivo data was acquired from a healthy young 
volunteer using a 3D SPoiled Gradient Recalled Echo (SPGR) sequence at 1.5T. 62 axial slices 
with 2.5 mm slice thickness and FOV of 240×240×155 mm3 for a TR/TE=58 ms/40 ms, FA=15°, 
512×256 in-plane and 12:20 min, with flow compensation [6]. 
 
Results: For numerical susceptibility reconstruction we computed the 
signal-to-error ratio (SER) of SCS and CS, reporting 27.3 dB and 23.7 
dB respectively (numerical χ maps not shown). For in-vivo data we 
used a field map with 200 iterations of dipole fitting. For image 
display we present only the first 103 sorted coefficients of optimal ߣ in 
Fig.1(a). To appreciate the structure of all the coefficients of ߣ 
(approx. 4·106 coefficients), a log-log plot is presented in Fig.1(b). 
Fig.2, illustrates the axial view of the χ map reconstructions using CS 
and SCS respectively. Optimal setting for CS is ߣ ൌ 2 ⋅ 10ିସ and for 
SCS is ߣ௞. Preservation of sharp edges can be observed in SCS. 
 
Conclusion: We have presented a new reconstruction framework 
tailored for MRI, which demonstrated in the in-vivo dataset an 
increase in image quality with respect of traditional CS. And in the 
numerical phantom gains of 3-4 dB were produced by SCS over CS. 
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Fig.1: ࢑ࣅas function of k. (a) Presentation of the 1000 
largest coefficients of ࣅ. (b) Logarithmic display of ࢑ࣅ.  
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Fig.2: Axial view (in ppm). In-vivo χ map reconstructions via CS (left) and SCS (right). Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 1592.


