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Target Audience: This work should be of interest to developers and users of advanced MR image reconstruction algorithms such as compressed 
sensing who wish to quantitatively evaluate the performance of these algorithms with image quality metrics that reflect clinical utility. 
Purpose: Traditional Cartesian MR data reconstruction has well-understood noise properties.  K-space data contaminated by Gaussian electronic 
noise are reconstructed via the linear FFT algorithm to obtain magnitude images containing Rician noise, often well approximated as Gaussian.  
Modern dynamic and quantitative imaging however benefits from faster imaging, achieved by acquiring less data and compensating through parallel 
imaging or constrained iterative reconstructions such as compressed sensing (CS).  CS algorithms are non-linear, invalidating the original linear 
systems-based analysis of noise in MR images and may produce images of high apparent quality measured by metrics such as pixel SNR (SNRp) 
through de-nosing or other non-linear effects, while incongruently suppressing or modifying clinically-relevant image features.  The purpose of this 
work is to develop an image quality metric based on task-specific Hotelling SNR (SNRh) that reflects clinical utility, overcoming limitations of SNRp 
and related metrics to allow for more meaningful quantitative comparisons and optimization of accelerated acquisitions and CS reconstructions.   
Methods: Consider an imaged object (human or phantom) represented by a spatial distribution of MR parameters, ࢌሺ࢘ሻ ൌ ሼ ଵܶሺ࢘ሻ, ଶܶሺ࢘ሻ, …ሺ࢘ሻߩ ሽ, 
and a detection task, i.e., determine the presence (hypothesis H1) or absence (hypothesis H0) of a clinically important object feature.  The object f 
passes through the MR imaging system ࣢ to generate k-space data k corrupted by Gaussian noise n: ࢑ ൌ ሺ࢘ሻࢌ࣢ ൅  K-space data k is then passed  .࢔
to a CS reconstruction algorithm ࣬ to generate image g, thus ࢍ ൌ ࣬ሼ࢑ሽ ൌ ࣬ሼࢌ࣢ሺ࢘ሻ ൅  ሽ.  The Hotelling observer1 is the linear observer function࢔
that maximizes separability of object classes by de-correlating the noise in the image g and subsequently multiplying by a template, the expected 
difference in the image between hypotheses H0 and H1.  The corresponding Hotelling observer SNR is defined by the equation  

SNRh
ଶ=ሾ〈ࢍ|Hଵ〉 െ ࢍିܭሿற〈H଴|ࢍ〉 ଵሾ〈ࢍ|Hଵ〉 െ  ,ሿ〈H଴|ࢍ〉

where 〈ࢍ|Hj〉 represents the expectation of the image under hypotheses Hj and Kg is the image noise covariance matrix. The feature of interest is 
assumed to be small enough to not affect the noise correlation structure.  As a measure of image quality we propose the Hotelling efficiency εh, 
defined as the ratio of SNRh for a fully-sampled Cartesian acquisition and SNRh for an under-sampled CS acquisition, thus representing the loss in 
task performance by resorting to an under-sampled acquisition, ߝ௛=

SNRhሺ࣢ ൌ 	under-sampled, ࣬ ൌ 	CS reconstructionሻ
SNRhሺ࣢ ൌ Cartesian fully-sampled, ࣬ ൌ 	FFT reconstructionሻ . 

To test this metric a simulated imaging system and high-resolution anthropomorphic digital brain phantom2 were utilized to generate image recons 
for a 2D Cartesian spin-echo sequence (TE=30ms, TR=1500ms, matrix=256x256) and under-sampled 2D pseudo-radial spin-echo sequence with the 
same timings (64 or 128 views).  The CS reconstruction was an implementation of the Split-Bregman technique3 with total variation and wavelet 
sparsity constraints.  The task was to detect a localized difference in proton density ρ of diameter 4 mm at a given location within the brain.  The 
change in ρ was calibrated for each location such that the Hotelling observer had a 95% chance of correctly discriminating between a random pair of 
H0 and H1 images (corresponding to SNRh ≃ 2.34ሻ for the fully-sampled acquisition with the variance of n set to achieve SNRp ≃ 30 in gray matter. 
Results:  Figure 1 compares εh for 64 and 128-view acquisitions using the same CS recon.  Mean εh was 0.689 and 0.948 respectively with low 
variation across the FOV.  Figure 2 compares εh and SNRp for the 128-view data and a 64-view dataset reconstructed with increased regularization.  
SNRp was higher in 74.8% of ROIs for the highly regularized 64-view data, while εh indicates greater task performance for the 128-view dataset. 
Discussion:  Figure 2 illustrates the dangers of using SNRp in the presence of non-linear regularization, which can have arbitrary amounts of 
smoothing or de-noising depending on the choice of regularization parameters.  At some level de-noising will begin to negatively impact clinical 
utility, which is not captured by SNRp, while εh that measures task performance more effectively captures the impact of these types of regularization.   
Conclusion:  We have developed and tested an image quality metric that is able to compare and optimize CS regularized reconstructions.  This 
method better reflects clinical utility and is not susceptible to the problems encountered when using SNRp for non-linear reconstructions. 
References: 1. Barrett, HH, Myers KJ, Foundations of Image Science, Hoboken NJ: Wiley 2004. 2. Graff, CG, Framework for Task-Based Assessment of MR Image 
Quality, Proc. ISMRM 2013 p701. 3. Goldstein T, Osher S, The Split Bregman Method for L1-Regularized Problems, SIAM Imag. Sci. v2:2, p323-343.  
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Fig 1. Calculated efficiency εh for locations throughout the brain for 64 
radial views (l) and 128 radial views (r). 

Fig 2. The εh (l) and SNRp (r) metrics for 64-view recon with high 
regularization vs. 128-view recon with lower regularization for each ROI 
shown in Fig. 1.  SNRp indicates better performance with 64-view data for 
74.8% of ROIs while εh indicates 128-view data are superior for all ROIs. 
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