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Target Audience: This work should be of interest to developers and users of advanced MR image reconstruction algorithms such as compressed
sensing who wish to quantitatively evaluate the performance of these algorithms with image quality metrics that reflect clinical utility.

Purpose: Traditional Cartesian MR data reconstruction has well-understood noise properties. K-space data contaminated by Gaussian electronic
noise are reconstructed via the linear FFT algorithm to obtain magnitude images containing Rician noise, often well approximated as Gaussian.
Modern dynamic and quantitative imaging however benefits from faster imaging, achieved by acquiring less data and compensating through parallel
imaging or constrained iterative reconstructions such as compressed sensing (CS). CS algorithms are non-linear, invalidating the original linear
systems-based analysis of noise in MR images and may produce images of high apparent quality measured by metrics such as pixel SNR (SNR;)
through de-nosing or other non-linear effects, while incongruently suppressing or modifying clinically-relevant image features. The purpose of this
work is to develop an image quality metric based on task-specific Hotelling SNR (SNRy,) that reflects clinical utility, overcoming limitations of SNR,
and related metrics to allow for more meaningful quantitative comparisons and optimization of accelerated acquisitions and CS reconstructions.
Methods: Consider an imaged object (human or phantom) represented by a spatial distribution of MR parameters, f(r) = {T,(r), T, (1), p(r) ...},
and a detection task, i.e., determine the presence (hypothesis H;) or absence (hypothesis Hy) of a clinically important object feature. The object f
passes through the MR imaging system # to generate k-space data k corrupted by Gaussian noise n: k = Hf(r) + n. K-space data k is then passed
to a CS reconstruction algorithm R to generate image g, thus g = R{k} = R{}:f(r) + n}. The Hotelling observer' is the linear observer function
that maximizes separability of object classes by de-correlating the noise in the image g and subsequently multiplying by a template, the expected
difference in the image between hypotheses Hy and Hl The corresponding Hotelling observer SNR is defined by the equation

SNR{=[(g|H;) — (g|Ho)]"K; [{g|H,) — (g[Ho)],
where (g|H;) represents the expectation of the image under hypotheses H; and K, is the image noise covariance matrix. The feature of interest is
assumed to be small enough to not affect the noise correlation structure. As a measure of image quality we propose the Hotelling efficiency &,
defined as the ratio of SNR, for a fully-sampled Cartesian acquisition and SNRy, for an under-sampled CS acquisition, thus representing the loss in

task performance by resorting to an under-sampled acquisition,
SNRy,(H = under-sampled, R = CS reconstruction)

&n SNR;,(# = Cartesian fully-sampled, R = FFT reconstruction) '
To test this metric a simulated imaging system and high-resolution anthropomorphic digital brain phantom® were utilized to generate image recons
for a 2D Cartesian spin-echo sequence (TE=30ms, TR=1500ms, matrix=256x256) and under-sampled 2D pseudo-radial spin-echo sequence with the
same timings (64 or 128 views). The CS reconstruction was an implementation of the Split-Bregman technique® with total variation and wavelet
sparsity constraints. The task was to detect a localized difference in proton density p of diameter 4 mm at a given location within the brain. The
change in p was calibrated for each location such that the Hotelling observer had a 95% chance of correctly discriminating between a random pair of
Hy and H; images (corresponding to SNRy, = 2.34) for the fully-sampled acquisition with the variance of n set to achieve SNRj, = 30 in gray matter.
Results: Figure 1 compares ¢, for 64 and 128-view acquisitions using the same CS recon. Mean ¢, was 0.689 and 0.948 respectively with low
variation across the FOV. Figure 2 compares ¢, and SNRp for the 128-view data and a 64-view dataset reconstructed with increased regularization.
SNR,, was higher in 74.8% of ROIs for the highly regularized 64-view data, while ¢, indicates greater task performance for the 128-view dataset.
Discussion: Figure 2 illustrates the dangers of using SNR, in the presence of non-linear regularization, which can have arbitrary amounts of
smoothing or de-noising depending on the choice of regularization parameters. At some level de-noising will begin to negatively impact clinical
utility, which is not captured by SNR,,, while ¢, that measures task performance more effectively captures the impact of these types of regularization.
Conclusion: We have developed and tested an image quality metric that is able to compare and optimize CS regularized reconstructions. This
method better reflects clinical utility and is not susceptible to the problems encountered when using SNR, for non-linear reconstructions.
References: 1. Barrett, HH, Myers KJ, Foundations of Image Science, Hoboken NJ: Wiley 2004. 2. Graff, CG, Framework for Task-Based Assessment of MR Image
Quality, Proc. ISMRM 2013 p701. 3. Goldstein T, Osher S, The Split Bregman Method for L1 Regulartzed Problems, SIAM Imag. Sci. v2:2, p323-343.
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Fig 1. Calculated efficiency ¢, for locations throughout the brain for 64 shown in Fig. 1. SNR » indicates better performance with 64-view data for
radial views (1) and 128 radial views (r). 74.8% of ROIs while ¢, indicates 128-view data are superior for all ROIs.
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