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Purpose a.
Accurate segmentation of subcortical nuclei is required in many neuroscientific studies. Automatic
segmentation methods typically depend on T contrast to detect boundaries of these nuclei, that is then used
to look for between-subject anatomical variability, but T;-weighting does not yield adequate contrast for all
boundaries. We aim to improve upon unimodal (T;-weighted) segmentation of subcortical brain structures
by using a data-fusion approach that combines multiple images with different contrasts (e.g. T;- or T5-
weighted, FA). As more information is contained in a set of images, the segmentation is more data-driven
and has less need to rely on prior knowledge obtained from error-prone manual training data.
Methods
We use a hierarchical generative model that consists of two parts:
1. Shape model:
The mesh that delineates a structure in each individual subject (the ‘shape’) is parameterised by
displacements along the normal to a reference surface. The vector § contains the displacements at all
vertices and is assumed to be distributed as a multivariate normal distribution (MVN) with mean zero
and covariance matrix Z5:
p(8]25) = MVN(8]0,25)
2. Intensity model
Image intensities are sampled at k' points along the normals of the reference shape. The profiles from all
modalities at vertex i are packed into a vector y;, which is also assumed to be MVN distributed:
p(yil6i 1l 21) = MVN(}’ill‘{,sv Zs)
where the mean g} has dimension k > k' and the covariance matrix 2{15 has dimension k by k. The
subscript § denotes that a subset of length k is taken, centred around a displacement §;. This yields the
shorter k'-dimensional mean vector l‘{,& and the covariance matrix 2{,5 with dimension k' by k'.
We use conjugate priors for both parts of the model and sample from the posterior distribution p(8|y;, Z, A)
using Gibbs sampling. Here, Z denotes the training data from which X!, u! and £° are learned and A denotes
all hyperparameters, which are set to reflect our belief that both the shapes and profiles should be smooth.
This also serves to regularise the model. Intuitively, the profiles are shifted by amounts §; to best agree with
the reference intensity profiles (part 2) and yield overall shapes that are more probable, as determined from
the training data (part 1).
The model was trained using displacements generated by FIRST'. Data used were from the Human
Connectome Project’s Q1 release?; with 40 subjects used for training. We used T;-weighted (MPRAGE, 0.7
mm isotropic), T,-weighted (T2-SPACE, 0.7 mm isotropic) and diffusion (SE EPI, monopolar diffusion
weighting, multiband, 1.25 mm isotropic) data. The diffusion data are corrected for gradient non-linearity
distortions, eddy-current distortions and susceptibility-induced distortions®. Inter-modal registrations were
carefully evaluated to ensure great accuracy in the alignment.
Results
Examples of areas where multimodal segmentation obviously improves on the results from FIRST (which
only uses the T|-weighted image) are displayed in Fig. 1. The figure illustrates how the inclusion of multiple
modalities helps segmentation: at the point highlighted in the globus pallidus (Fig. 1¢), there is no
perceivable contrast in the T{-weighted volume, but the T,-weighted and FA volumes can inform
segmentation here.
Discussion
Initial results indicate that the approach is successful at integrating information from multiple modalities. It
performs better than FIRST in areas with low T|-weighted contrast, as FIRST has to rely on its shape model.
Because the training data were generated with FIRST in this case, the boundaries may be biased in areas
where FIRST consistently over- or underestimates the extent of the structure. However, that has not
prevented the current method correcting errors in FIRST segmentations in many cases, as can be seen in the
figures here. In the future we intend to refine the training data by manually examining and correcting these
training segmentations.
Conclusion
Parts of subcortical structures may be clearly visible with one MR contrast but not with another. A
mult%modal approach to segmentation can take advantage Figure 1. Fitted shapes for the left pallidum (a-c)
of this to produce more accurate results. and left putamen (d-f, different subject). Images
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