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Background:

Parallel Magnetic Resonance Imaging (MRI) [1] and Compressed Sensing (CS) [2] are two dominant techniques for the
acceleration of MRI acquisition. CS theory can be used in conjunction with a parallel MRI reconstruction to control noise
amplification provided a sparse model appropriate for the object being imaged is used. Highly sparse representations such as
overcomplete patch-based and adaptive dictionaries, have shown greater potential than complete and non-adaptive transforms [3-5],
but have not yet been tested for parallel MRI. Here we propose an iterative reconstruction for parallel MRI using dictionaries.
Methods:

Assuming m € C" to be the magnetisation image of interest, its acquisition can be accelerated by a factor R = P/Q acquiring parallel
k-space samples y = MESgm € C%, where Sg is a sensitivity encoding operator, F is a 2D Fourier transform, M is an undersampling
mask operator selecting only Q samples per coil, and C is the number of coils. The SPIRIiT method [1] poses the reconstruction as the
solution to miny |[Mx - y|l,* + A% [[(G-Dx||,* + A,> T(x), with G a calibration matrix that is computed from the fully sampled centre of k-
space and T(x) a penalty term that can be sparsity promoting. The use of wavelets has been proposed as a L1 sparsity penalty to
control noise amplification, but at high acceleration factors it becomes insufficient and can introduce unnatural looking artifacts.

We propose the use of an overcomplete patch-based dictionary De C™Y, N>P>>n, to impose highly sparse representations of
\nxVn overlapping patches from image m. The reconstruction is defined as the result of min,r [Mx - y|l,* + A% [[(G-Dx|].> + 27lvillo
s.t. Zi[IRiSpF'x — Dy;|l,> < &, where Sp is a sensitivity decoding operator such that SpSg = I € R”, R; extracts patch i from an image, and
7; is the sparse coding of patch R;SpF"x in dictionary D, and populates column i of T. This optimisation problem can be solved by
alternating the minimisation with respect to x and I with the initialisation T' = 0 and x = M"y. The dictionary can either be fixed-basis
such as a Discrete Cosine Transform (DCT) dictionary, or can be trained using Dictionary Learning (DL).

The method is evaluated against wavelet regularised SPIRiT on a simulated phantom and on raw Cartesian k-space data from 5
subjects using a SSFP cardiac cine sequence obtained using 32-coils on a 1.5T Philips Achieva system. The data was acquired fully
sampled with no SENSE acceleration and retrospectively undersampled by randomly selecting Phase encode lines using a Poisson
distribution. A fully sampled central k-space region of 17 lines was preserved for coil calibration purposes. Dictionaries with N = 196
atoms of size n = 8x8 were trained offline on the fully sampled image for the phantom and on a different patient scan for the MR
images.

Results:

Figure 1 shows reconstructions of a simulated 8-coil acquisition of a phantom with k-space SNR of 30dB accelerated by 7. Without
regularisation, noise amplification is evident (b, ¢). This can be reduced with L1 wavelet regularisation, but natural features of the
image are lost (d, e). The dictionary regularisation proposed is able to control noise amplification and keep image features (f-i),
especially with prior training (h, i). Figure 2 shows the PSNR and MSSIM at different acceleration rates of the phantom, and figure 3
shows results on raw MRI data. The dictionary-based method produced the lowest error for the 5 MRI reconstructions tested.
Conclusion:

CS can be used to counteract the inherent noise amplification of parallel MRI reconstructions. Adaptive overcomplete dictionaries
are able to provide sparser representations than complete frames, and so can provide reconstructions with improved performance.
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Figure 1 — Phantom reconstruction at R=7: Original (a), Figure 2 — PSNR (solid) and MSSIM Figure 3 — MRI reconstructions at
SPIRIT (b,c), L1-SPIRIT (d,e), DCT-SPIRIT (f,g), DL-SPIRiT (dashed) performance against R=10. Reconstruction figures show
(h,i). acceleration rate in phantom simulation. PSNR levels in dBs.
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