Incoherence Parameter Analysis for Optimized Compressed Sensing with Nonlinear Encoding Gradients

Leo K. Tam¹, Gigi Galiana¹, Haifeng Wang¹, Emre Kopanoglu¹, Andrew Dewdney², Dana C. Peters¹, and R. Todd Constable¹ Diagnostic Radiology, Yale University, New Haven, CT, United States, ²Siemens Healthcare AG, Erlangen, Bavaria, Germany

Target Audience: The compressed sensing and non-linear gradient encoding communities. **Purpose**: The incoherence parameter as defined below determines compressed sensing convergence (CS). The incoherence parameter is visualized through pairwise incoherence maps and minimized to improve CS performance. Ospace imaging³, a nonlinear magnetic gradient field encoding parallel imaging method, is shown to produce levels of incoherence that exceed levels in linear encoding methods for a 2D slice. The current work proposes optimizing the incoherence parameter using nonlinear gradients to improve the convergence performance for CS. **Methods**: To ensure the restricted null space property, which similar to the restricted isometry property is sufficient to guarantee convergence in CS, the pairwise

incoherence parameter must satisfy: $\delta \coloneqq max \left| \frac{\left| (\Phi \Psi^{-1})_i \right| (\Phi \Psi^{-1})_j \right|}{N} \right| \le \frac{1}{3k} \forall i \ne j$, where Ψ is the sparsifying transform, Φ is the sensing basis (encoding matrix), indices

refers to a single row in $\Phi\Psi^{-1}$, N is the number of pixels in the image, and the sparsity cardinality k specifies the largest subset of vectors in the sparse domain that will be exactly recovered. L24 The pulse sequence, gradient fields, and receiver array are shown in fig. 1. The Z^2 coefficients are iterated 20 times within a 30% range of nominal to find a best "randomized" set to produce maximum incoherence. The reconstruction used is the Kaczmarz iterative algebraic projection reconstruction (ART) algorithm, which is a type of projection on to convex sets algorithm that converges to the minimum norm solution. The sparsity-promoting convex optimization uses the Daubechies wavelets and total variation. The argument of δ is measured at every point in the grid (fig. 1) and a sample value is given for single and double detectors. **Results**: The incoherence parameter was successfully reduced by up to 51.6% at points moving from single to double receivers for pseudo-random O-space (see tab. 1 showing values for $\arg\{\delta\}$ and fig. 2) and the image MSE was up to 21.9% less when optimized (fig. 3). **References**: Donoho, D. et. al. IEEE Info Thry 2006; 52(12):5406. Cohen, A. et. al. J. AMS 2009; 22(1):211. Stockmann, J. et. al. MRM 2010. 64: 447. Donoho, D., Huo XM. IEEE Info. Thry. 2001;47(7):2845. Tam, L.K. et. al. ISMRM 2013, p2611. Herman G.T. et. al. J. Theo. Biol. 42:1. Liang et al. MRM 2009. 62: p. 1574-1584.

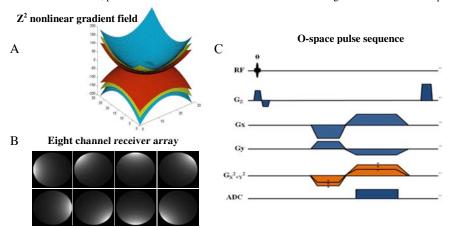


Fig. 1. (A) Isocontours of the nonlinear Z^2 (= z^2 - $1/2(x^2+y^2)$ spatial variation) magnetic encoding field. (B) Receiver sensitivity profiles of an 8 channel receiver array used in parallel imaging. (C) O-space is a gradient echo sequence, with 3 encoding fields, the two linear fields and a nonlinear Z^2 field. The Z^2 strength may be perturbed to optimize the incoherence parameter⁵, which determines the number of sparsity vectors exactly recovered in CS.

Incoherence Parameter Visualizations

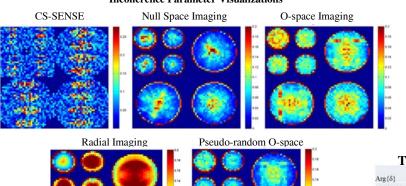


Fig. 2. Incoherence parameter maps $(arg\{\delta\})$ visualize the pairwise incoherence for CS-SENSE⁶, NSI, O-space, and pseudorandom CP O-space methods by computing the pairwise incoherence at every point in the grid. A lower value (blue) indicates better incoherence and leads to recovery of more sparse vectors. CS-SENSE shows SENSE noise amplification patterns that undesirably increase the incoherence parameter. Pseudo-random O-space has the lowest SPR values overall.

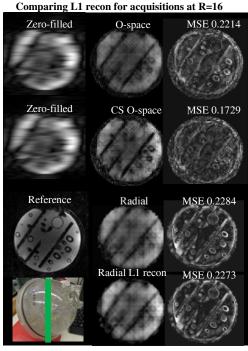


Fig. 3. 128x128 images of a contrast phantom at R=16 and difference images comparing algebraic reconstruction for O-space, Radial, and their CS optimized counterparts. Experiments were on a 3T Siemens MAGNETOM Trio TIM. SENSE is intractable due to noise amplification at R=16. MSE is reduced when the incoherence parameter is reduced via perturbation of the nonlinear gradient.

Table 1. Arg $\{\delta\}$ values at (9,27) (lower is better)

Arg{δ}		Linear (randomized along readout)	Phase encoding	O=space (gradient strength randomized)		
Single detector, 1/4 data 2 detectors, 1/4 data Single detector, 1/8 data 2 detectors, 1/8 data and pseudo-	0.2237	7 0.2149 1 0.8469	0.633		0.1326 0.0684 0.2213	
						0.1097