
Fig. 1: Simulated radial data, a: fully sampled noiseless 
gridding reconstruction, b: undersampled gridding 
reconstruction, c: 3D-dictionary-learning-CS reconstruction 

Fig. 2: Phantom 23Na-data, a: gridding 
reconstruction, b: 3D-dictionary-learning-
CS reconstruction; rod diameters are 
3-10mm 

Fig. 3: In-vivo 23Na-data, a: gridding 
reconstruction, b: 3D-dictionary-learning-
CS reconstruction 
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Intruduction 
The increasing availability of ultra-high field MR-systems within the last years has enabled in-vivo sodium MRI at resolutions of a few millimeters within measurement 
times of 10-20 minutes. However, the major drawbacks of sodium MRI are still its low NMR sensitivity (9.2% of proton sensitivity) and the low in-vivo concentration 
that result in poor SNR1. Several attempts that utilize compressed sensing2, iterative imagine reconstruction techniques and the incorporation of prior knowledge from 
proton MRI have been made to improve the image quality of non-proton data3,4,5. Whereas first implementations of compressed sensing in MRI used analytical 
transforms such as wavelets or total variation to enforce sparsity, adaptive patch-based dictionaries recently made their appearance in MRI6,7. In this work we propose 
the application of 3-dimensional block dictionaries learnt directly on the noisy high-resolution 23Na-images reconstructed with gridding, using the K-SVD algorithm 
described by Aharon et al8. These dictionaries are then used as the sparsifying transform in a compressed sensing framework. The performance of this method is 
evaluated on simulated data showing multiple sclerosis (MS)-lesions, a resolution phantom and in-vivo 23Na-data of a healthy volunteer. 

Methods 
For 3D-dictionary-learning-CS the following minimization problem has to be solved iteratively: ൛હෝܑܓܒ, ෡ൟ܆ ൌ ܆,ܓܒહܑ	ܖܑܕ	܏ܚ܉ ܆۴‖ૃ െ ૛૛‖܇ ൅෍μܑܓܒฮહܑܓܒฮ૙ ൅෍ฮ۲હܑܓܒ െ ܓܒܑܓܒฮ૛૛ܑ܆ܓܒܑ܀  

X is the reconstructed image, FX is its gridding reconstruction, Y is the measured raw data, αijk is the sparse representation in the dictionary D and Rijk is a diagonal 
matrix that extracts a block of interest from the image. The cost function combines self-consistency of the reconstructed image, sparsity of the dictionary coefficients 
and block wise consistency of the reconstructed image and its dictionary representation. The minimization of the cost function is achieved by alternately solving  હෝܑܓܒ ൌ ܓܒહܑ		ܖܑܕ	܏ܚ܉ μܑܓܒฮહܑܓܒฮ૙ ൅ ฮ۲હܑܓܒ െ ෡܆  ࢐࢑ฮ૛૛ using the K-SVD algorithm and࢏ܠ ൌ ܆		ܖܑܕ	܏ܚ܉ ܆۴‖ૃ െ ૛૛‖܇ ൅ ฮ۲હܑܓܒ െ  .࢐࢑ฮ૛૛ with a conjugate gradient algorithm࢏ܠ

The algorithm was initialized with the gridding reconstruction of the image with zero-filling to a 
matrix size of 256x256x256 (original size: 128x128x128). The applied dictionary consists of 1024 
blocks (block-size: 8x8x8) and is learnt on 40000 samples from the image obtained by gridding. 
The reconstruction algorithm was tested on simulated data with MS-lesions from the BrainWeb 
database (1mm isotropic). Radial k-space data was simulated with a nominal resolution of 2mm 
isotropic. 10000 projections were used, which corresponds to ≈ 20% of the Nyquist sampling rate. 

A density-adapted 3D radial projection pulse sequence9 was applied to acquire 23Na data on a 7 T 
whole body MR system (Magnetom 7 T, Siemens Healthcare, Erlangen, Germany). A double-
resonant (1H: 297.2 MHz; 23Na: 78.6 MHz) quadrature birdcage coil (Rapid Biomed GmbH, 
Rimpar, Germany) was used. Both a resolution phantom (0.9% saline solution; the distances 
between the acrylic glass rods are identical to the diameters of the rods; acquisition parameters: 1.5mm isotropic, 
20000 projections, TE/TR=0.35/30ms, α=51°, TA=10min) and a healthy volunteer (2mm isotropic, 40000 
projections, TE/TR=0.35/30ms, α=51°, TA=20min) were measured and reconstructed with gridding and 3D-
dictionary-learning-CS reconstruction. 

Results 
Figure 1 shows the fully sampled noiseless gridding reconstruction (figure 1a), the undersampled gridding 
reconstruction with additional noise (figure 1b) and the 3D-dictionary-learning reconstruction of the noisy 
undersampled simulated data (figure 1c). Compared to gridding, the 3D-dictionary-learning-CS reconstruction 
benefits from significantly reduced noise, 25% higher structural similarity (SSIM)10 and 12.5% lower RMSE. Small 
lesions that cannot be distinguished from noise when using gridding are visible when using 3D-dictionary-learning-
CS. The K-SVD converged after a maximum of 20 iterations, the conjugate gradient algorithm after 5 iterations. The 
total reconstruction time was 10 min on a standalone PC. The reconstructions of the phantom-data can be seen in 
figure 2. The image reconstructed with 3D-dictionary-learning benefits from significantly reduced noise while edges 
and small structures are well preserved. This is confirmed by the results achieved with in-vivo data (figure 3). While 
noise is clearly reduced, fine structures are well resolved without any visible loss of information. The reconstruction 
times were 60 min for the phantom data and 30 min for in-vivo data. 

Discussion & Conclusion 
 3D-dictionary-learning-CS was applied for the reconstruction of 23Na-data. Compared to other algorithms no prior 
knowledge about the anatomy was included, which prevents bias. The applied algorithm enables sparse 
representations and therefore good performance in the reduction of noise and incoherent artifacts. The results 
obtained exhibit significant noise reduction compared to the gridding reconstructions without compromising the 
visibility of small structures or smearing edges. 
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