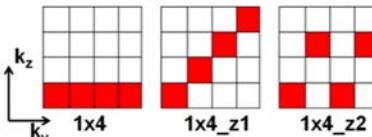


Accelerated 3D EPI using 2D blipped-CAIPI for high temporal and/or spatial resolution

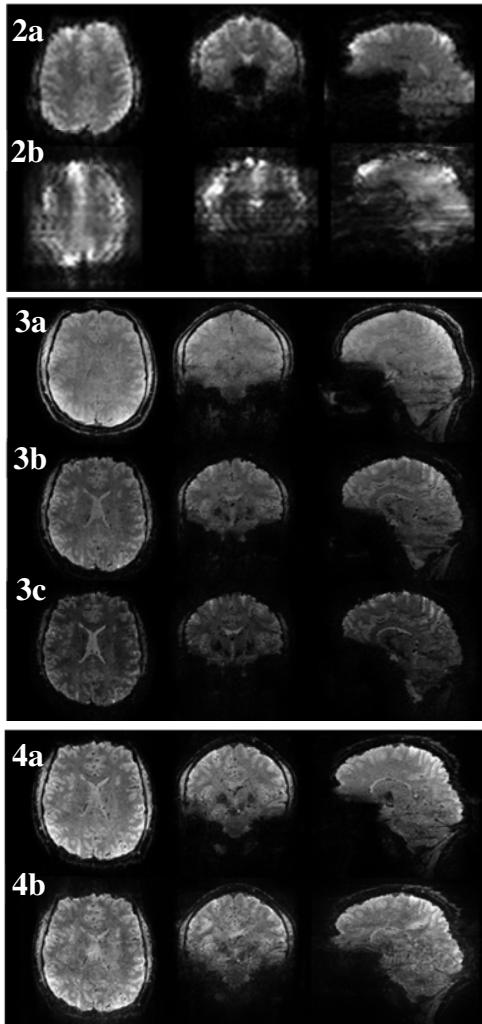
Benedikt A Poser^{1,2}, Dimo Ivanov¹, Stephan A Kannengiesser³, Kamil Uludag¹, and Markus Barth^{2,4}

¹Faculty of Psychology and Neuroscience, Maastricht University, 6200MD Maastricht, Netherlands, ²Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands, ³MR Applications Development, Siemens AG, Healthcare Sector, Erlangen, Germany, ⁴Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany

Target audience: MR physicists and Neuroscientists


Purpose: Improved volumetric EPI reconstruction for neuroscience applications

Introduction


3D EPI can offer advantages over 2D EPI when operating in the thermal noise regime (high spatial resolution)^[1,2,3]. Furthermore, considerable reductions in volume acquisition times can be achieved by parallel acceleration along the secondary (k_z) phase encoding direction. Similar to the recently proposed simultaneous multislice (SMS) EPI^[4,5] this increases BOLD fMRI sampling rates and reduces the vulnerability to physiological fluctuations, and ultimately increases BOLD sensitivity^[3]. Conventional SENSE or GRAPPA along the two phase-encoding directions is independently limited by the coil sensitivities along the two dimensions. Furthermore, the g-noise is greatest at the center where both aliases overlap. **We propose 2D blipped-CAIPIRINHA^[5,6] to lift these limitations, to achieve a higher undersampling factor, and to gain full flexibility how to utilise it.**

Theory

2D CAIPIRINHA (“CAIPI”)^[6] has been developed for optimal exploitation of the FOV and coil encoding: strategic sampling of the partial k-space controls the alias so as to distribute it over the FOV. A prominent feature of CAIPI is that it can exploit coil sensitivities in one direction to undersample along another. The conventional notion of an in-plane (AF_{PE}) and through-plane acceleration factor (AF_{3D}) is therefore lost, and the reconstruction characterized by total undersampling/acceleration AF_{tot} and a “CAIPI pattern”. For one-shot-one-line methods (e.g. FLASH) the pattern does not affect scan time, which follows AF_{tot} . In the proposed 3D EPI acquisition the entire k_y - k_z plane is acquired per shot, thus the flexibility added by CAIPI does impact on scan time: The total undersampling capability can be invested to (a) **reduce the number of EPI shots**^[7], (b) **reduce the number of lines per shot**^[8], or (c) **any desired tradeoff between the two**^[8]. We demonstrate each of these cases with $AF_{tot} = 16$.

Fig 1: CAIPI patterns for $AF_{tot}=4$, expressed with k_z shift.
 1x4 relies fully on coil sensitivities along z
 1x4_z1 can reconstruct with sensitivities in z OR y alone
 1x4_z2 can reconstruct with sensitivity in z alone

Methods

CAIPI-enabled 3D multi-echo EPI was implemented on a Siemens 7T with 32ch head coil: **The EPI readout is either modulated by Δk_z -blips (for $AF_{3D} \geq AF_{PE}$), or successive k_z -planes are shifted by Δk_y and appropriate echo shifts (for $AF_{3D} < AF_{PE}$)**. Human scans were in accordance with IRB protocols. We demonstrate three choices at $AF_{tot}=16$: **1) High temporal resolution** (3.0mm voxels, 64x64x64 matrix, CAIPI 1x16_z6, TE=19ms, TR_{shot}=37ms, TR_{vol}=148ms; normal GRAPPA 1x12 as reference); **2) High spatial resolution, multi-echo** (0.8mm voxels, 240x240x208 matrix, CAIPI 16x1_y4 ($\rightarrow 4 \times 4_z1$) TE=9/22/35ms, TR_{shot}=47ms, TR_{vol}=7330ms); **3) an intermediate choice** (0.8mm voxels, 240x240x208 matrix, CAIPI 4x4_z2 TE=19ms, TR_{shot}=49ms, TR_{vol}=1911ms; normal GRAPPA 4x4 as reference).

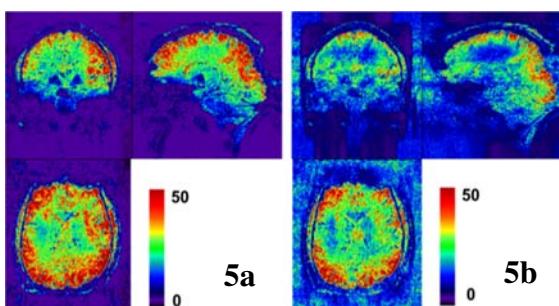

Results

Fig 2: High temporal resolution. 3mm iso resolution at **volume TR=148ms** acquired with CAIPI 1x16_z6 (2a) and regular GRAPPA 1x12 (2b). k_x - k_y planes are fully sampled, resulting in distortion. Regular GRAPPA clearly fails due to its inability to use in-plane coil sensitivities for through-plane acceleration.

Fig 3: High spatial resolution, multi-echo. CAIPI 16x1_y4 provides maximal in-plane acceleration, hence high spatial resolution with negligible distortions due to the short **echo train of 12ms**. Images were simultaneously acquired at TE=9/22/35ms (3a,b,c). The 16x1_y4 CAIPI pattern is equivalent to 4x4_z1. Regular 16x1 GRAPPA does not produce a recognisable image and is hence not shown.

Fig 4: in-plane and through-plane acceleration. 4x4_z2 CAIPI (4a) appears much less blurry than the regular 4x4 GRAPPA scan (4b). Through-plane acceleration allows a very reasonable **volume TR=1.9s** while in-plane distortions (along A-P) remain acceptable.

Fig 5: tSNR maps of the 4x4 scans, computed over 25 volumes. The CAIPI data (5a) shows less background noise, and greater stability as a proxy for reduced g-noise, than the regular GRAPPA (5b). This is most apparent near the centre where all aliasing in the regular GRAPPA overlaps.

plane acceleration in same way, but it cannot exploit through-plane sensitivities for additional in-plane acceleration as here shown with volumetric CAIPI.

References

[1] Poser BA, Neuroimage 51(1):261-6; 2010
 [2] van der Zwaag W, MRM 67(2):344-52; 2012
 [3] Lutti A, MRM 69(6):1657-64; 2013
 [4] Moeller S, MRM 63(5):1144-53; 2010
 [5] Setsompop K, MRM 67(5):1210-24; 2012
 [6] Breuer FA, MRM 55(3):549-56; 2006
 [7] Narsude M, p4189; ISMRM 2013
 [8] Poser BA, p287; ESMRMB 2013

Discussion and Conclusion

The flexibility of CAIPI 3D EPI has been illustrated and good image quality and tSNR were observed with $AF_{tot}=16$. Practical use may warrant more modest choices. All coil encoding can be utilised along one phase- encode direction, but it also yields higher SNR than regular GRAPPA when sharing between both. An interesting next step is the comparison to blipped-CAIPI 2D SMS-EPI with slice-GRAPPA reconstruction^[4] which can turn in-plane coil sensitivities into through-