Lowering the B₁ Threshold for BEAR B₁ Mapping

Kalina V Jordanova¹, Dwight G Nishimura¹, and Adam B Kerr¹ ¹Electrical Engineering, Stanford University, Stanford, California, United States

PURPOSE: The recently proposed BEAR method¹ is a phase-based B_1 mapping method, with linear phase sensitivity to variations in B_1 . The method relies on two hyperbolic secant (HS1) pulses operating in their adiabatic regime used for refocusing, which limits the range of ω_{RF} B₁ that can be measured due to the adiabatic threshold of the pulses. Here, we redesign the BEAR method to use HSn pulses, which have lower adiabatic thresholds². By optimizing the HSn pulse parameters, we can reliably acquire B_1 maps for lower nominal peak B_1 ($B_{1,nom}$) than with the original BEAR method. We validate the performance of BEAR with HSn pulses via simulation and in vivo at 3T.

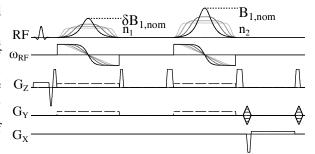


Figure 1: BEAR pulse sequence using HSn pulses: $n_1=n_2=1,2,4,8$ for lighter gray lines. $B_{1,A}$ for each HSn pulse is [0.091, 0.064, 0.052, 0.045] G respectively.

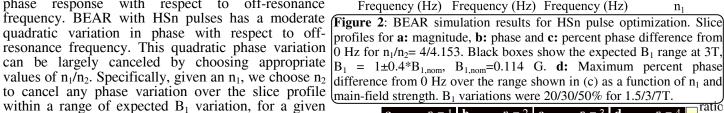
-500 0

% d.

12 10

500

METHODS: Fig. 1 shows the BEAR sequence with HSn pulses² where n_1 and n_2 determine the shape of the magnitude sweep for each pulse, $sech(\beta \tau^n)$, and can be non-integer. The adiabatic threshold B_{1.A} (the minimum B₁ that ensures refocusing of 90% a.


 $|M_{xy}|$) decreases with increasing n. Thus, increasing n reduces the sequence adiabatic threshold ($\sim B_{1,A}/\delta$, $\mathfrak{S}^{0.15}$ where δ is the ratio of the two pulse magnitudes), = 0.1

allowing for use of a lower $B_{1,nom}$.

The BEAR method using HS1 pulses has a flat phase response with respect to off-resonance frequency. BEAR with HSn pulses has a moderate quadratic variation in phase with respect to offresonance frequency. This quadratic phase variation can be largely canceled by choosing appropriate values of n_1/n_2 . Specifically, given an n_1 , we choose n_2 within a range of expected B₁ variation, for a given

B_{1,nom}. n₂ is chosen by minimizing the maximum percent offresonance phase difference from the on-resonance phase, over the expected B₁ range and slice profile. The expected variation in B₁ depends on the transmit coil used, so we have optimized

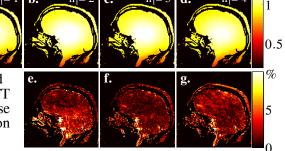
the method with different n_1 's for different B_1 ranges.

radians c.

b.

-500 0 500

ratio


0.8

0.6

0.4

0.2

500

The adiabatic pulse parameters ^{1,2} were $T/\beta/\mu$ =12 ms/5.3 rad/5.5 and δ =0.9. A 40° tip angle, TE/TR=49/200 ms, was used for a single 2DFT acquisition on a GE 3T scanner. To eliminate unwanted sources of phase variation, phase-difference images were made with the second acquisition reversing the order of the two adiabatic pulses.

RESTULTS: Fig. 2a-c show Bloch simulation results for BEAR using a set of optimized HSn pulses $(n_1/n_2=4/4.153)$. The magnitude and phase of the refocused M_{xy} as a function of B_1 and off-resonance frequency (Fig. 2a-b) show its insensitivity to off-resonance over the given B_1 range. Fig. 2c $n_1=1$, with average errors = [2.68, 1.93, 2.50] %.

Figure 3: a-d: BEAR scan results for varying n₁ normalized by $B_{1,nom}$ = [0.211, 0.142, 0.114, 0.102] G. e-f: % error for n_1 =2,4,8 compared to

illustrates that the percent phase difference due to off-resonance is minimized for the given B_1 range and slice profile. Fig. 2d shows the maximum percent phase difference for varying n₁ and field strength, indicating less than 10% error for all optimizations. Fig. 3a-d show that the in vivo BEAR B₁ maps for n₁=1,2,4,8 are all closely matched. B_{1,nom} was chosen to keep the total SAR the same for each image. Fig. 3e-g show percent differences with n_1 =1 as the reference.

DISCUSSION/CONCLUSION: The BEAR method has been redesigned to use HSn pulses, reducing the peak RF amplitude required for accurate B₁ measurement, while maintaining its insensitivity to off-resonance frequency, and linear phase sensitivity to B_1 variations. The method minimizes the B_1 map error seen within a B_1 range by selecting a particular n₂. Optimizations of a few B₁ ranges were made since different amounts of variation are expected, depending on the transmit coil (e.g., the 50% variation in B₁ is typical for a head transmit coil at 7T). Scan results showed the method's accurate B_1 mapping ability even for low $B_{1,nom}$. We expect this method to be useful for acquiring B_1 maps at lower $B_{1,nom}$. Acknowledgment: The authors thank Bob Dougherty for access to Stanford CNI's 3T scanner.

References: [1] Jordanova et al., Proceedings of ISMRM, Salt Lake City, p. 370, 2013. [2] Tannus et al., NMR in Biomed, 10:423-434, 1997.