

IN VIVO $\{^1\text{H}\}$ - ^{13}C NMR SPECTROSCOPY OF THE HUMAN CALF ON A 7-T WHOLE-BODY MR TOMOGRAPH

Tanja Platt¹, Andreas Korzowski¹, and Peter Bachert¹

¹Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany

TARGET AUDIENCE: Researchers interested in NMR spectroscopy with X nuclei at ultra-high B_0 fields.

INTRODUCTION: The carbon isotope ^{13}C is detectable in living tissue by NMR (natural abundance = 1.1 %, $\gamma_{^{13}\text{C}} = 6.726 \cdot 10^7 \text{ T}^{-1} \text{ s}^{-1}$, spin $I = \frac{1}{2}$). ^{13}C NMR spectroscopy (^{13}C MRS) is applied to observe various metabolites *in vivo*, e.g. triacylglycerides (TAG), glycogen, glucose, amino acids, without or with administration of ^{13}C labeled drugs.^{1,2} High field strengths and ^1H spin decoupling enhance signal and information content of ^{13}C NMR spectra. The aim of this study was to optimize the degree of ^1H -decoupling for a model solution by varying the parameters of two different decoupling schemes and then to obtain B_0 -shimmed ^1H -decoupled ^{13}C NMR spectra of the human calf on an experimental 7-T whole-body MR tomograph.

METHODS: The ^{13}C resonances of TAG in vegetable oil resemble the ^{13}C resonances of TAG in the human calf. Therefore we used a 280 ml vegetable oil phantom for tests and optimization of antenna system, 1-pulse sequence, and ^1H -decoupling technique. ^{13}C detection was done with $\text{TR} = 4.0 \text{ s}$, pulse width = 0.25 ms (B_1), spectral width $\Delta f = 2 \text{ kHz}$, 2048 data points. In phantom experiments two decoupling schemes were optimized: WALTZ-4³ and continuous wave (cw). For WALTZ-4 we varied the decoupling pulse width, the delay between the decoupling pulses, the total decoupling period and the decoupling field strength (B_2), for cw the length of irradiation and B_2 . The optimized decoupling parameters were applied to *in vivo* ^{13}C NMR spectroscopy of the calf of a healthy 29-year-old female volunteer. A home-built ^{13}C / ^1H double-resonant transmit/receive surface coil was used (loop diameter = 7.5 cm). Figure 2a shows the position of the coil on the calf (GRE ^1H image). All measurements were performed on a 7-T scanner (MAGNETOM 7 T; Siemens Healthcare, Erlangen, Germany).

RESULTS: Optimal decoupling was obtained with duration of decoupling in the order of 50 % of the acquisition time and frequency of cw pulse set at the dominant methylene ^1H resonance. WALTZ-4 achieved a lower degree of decoupling due to B_2 inhomogeneities. The resulting ^{13}C NMR spectra (methylene region) of the model solution are shown in Fig. 1, the *in vivo* spectra in Fig. 2. Due to the collapse of the multiplets upon decoupling (fig. 1b and 2c) the different methylene groups can be distinguished. For the spectral region 29 ppm – 31 ppm decoupling provided an increase of SNR by a factor of 1.6 (compare 1b vs. 1a and 2c vs. 2b) for the model solution and for the human calf.

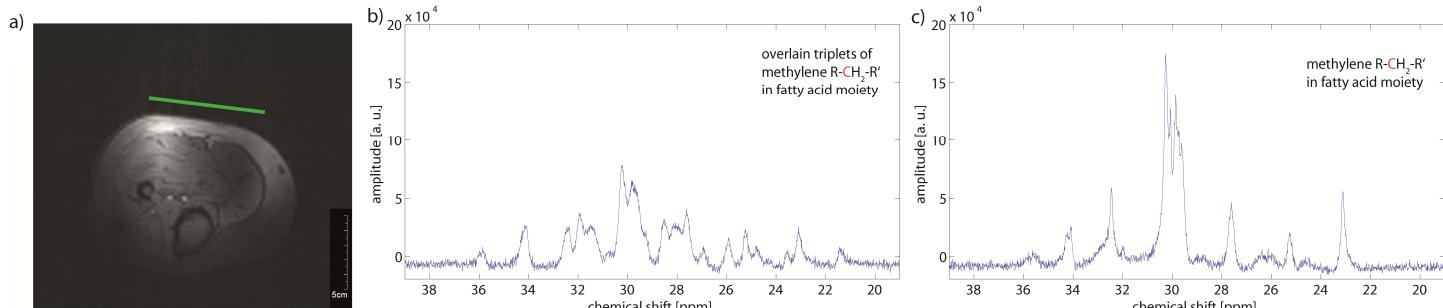


Fig. 1: Methylene region of ^{13}C NMR spectra obtained at $B_0 = 7 \text{ T}$ from vegetable oil without (a) and with cw ^1H -decoupling (b) ($n_{\text{ex}} = 4$, measurement time 16 sec).

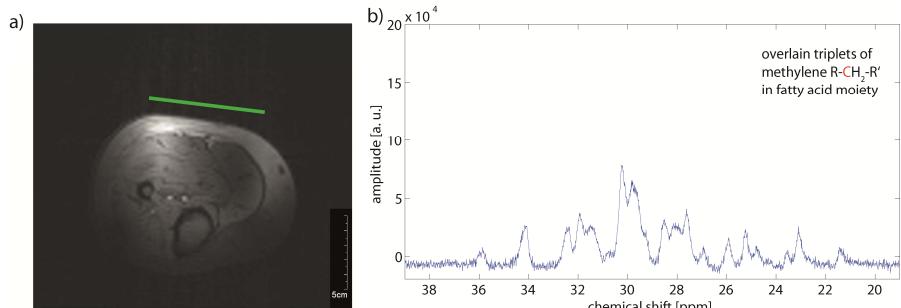


Fig. 2: (a) ^1H image with position of the coil (green) on the human calf (GRE sequence: $\text{TE/TR} = 2.36 \text{ ms} / 5.2 \text{ ms}$, matrix = 128×128 , $\text{FOV} = (250 \text{ mm})^2$, slice thickness = 5 mm). (b, c) *In vivo* ^{13}C NMR spectra showing methylene resonances of TAG in the human calf ($n_{\text{ex}} = 32$, measurement time about 2 min) obtained without (b) and with cw ^1H -decoupling (c).

CONCLUSION: Sequence parameters for $\{^1\text{H}\}$ - ^{13}C MRS were optimized in a 7-T whole-body scanner and applied to ^{13}C MRS of the human calf *in vivo*. The obtained natural-abundance ^{13}C NMR spectra are dominated by the resonances of fatty acids (TAG). High-field $\{^1\text{H}\}$ - ^{13}C MRS opens up new vistas in the noninvasive analysis of carbohydrate (glycolysis, citric acid cycle), amino acid, and lipid metabolism.

REFERENCES

1. Ende G, Bachert P. Dynamic ^{13}C - ^1H nuclear polarization of lipid methylene resonances applied to broadband proton-decoupled *in vivo* ^{13}C MR spectroscopy of human breast and calf tissue. *Magn. Reson. Med.* 30:415–423 (1993).
2. Behar KL, et al. Detection of metabolites in rabbit brain by ^{13}C NMR spectroscopy following administration of [$1-^{13}\text{C}$]glucose. *Magn. Reson. Med.* 3:911–920 (1986).
3. Levitt MH, Freeman R. Composite Pulse Decoupling. *J. Magn. Reson.* 43:502–507 (1981).