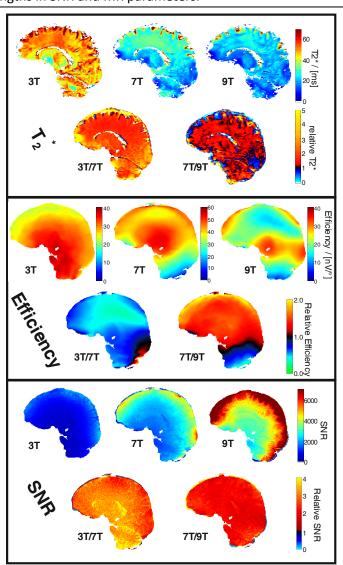
Brain Imaging with 7T vs. 9.4T: A direct Comparison of MR parameters and SNR

Rolf Pohmann¹ and Klaus Scheffler^{1,2}

¹Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, ²Department of Bioimaging, University of Tübingen, Germany


Introduction: While 7T has become a standard for ultra high field MR, the tendency towards even larger fields poses the question of whether the less favorable relaxation times, the inhomogeneous B_1 fields and the increasingly difficult coil design still allow us to take advantage of the expected gain in intrinsic SNR. Here, a direct comparison between 3T, 7T and 9.4 T shows the main differences between these field strengths in SNR and MR parameters.

Methods: At all fields, tight fitting helmet-shaped coils of similar size and similar number of receive elements (3T: Siemens, 32 elements, body coil excitation; 7T: Nova, 32 elements, local birdcage excitation, 9.4 T: homebuilt [1], 31 elements, local 16 element CP excitation) were used. T₁ in white matter was determined using a single-voxel inversion recovery sequence. A T₂* map was acquired, using a 3D-multi echo gre sequence. An AFI sequence was used to determine B₁ and transmit efficiency . Finally, a 3D-gre sequence with a spatial resolution of (1mm)³ and a nominal flip angle of 4° was used to determine SNR. In addition, the same scan was repeated without the excitation pulse to get the noise correlation information. SNR was determined with a pseudo-multiple replica technique [2] with 128 repetitions. The data was then corrected for flip angle and relaxation time to obtain the theoretical SNR for a 90°/TR=∞ sequence at all field strengths.

Results: Values for T_1 and T_2^* are shown in the table below. The efficiency maps show the significant increase in B_1 -field homogeneity with increasing field strength (relative standard deviation over the cerebrum: 12% (3T), 23% (7T), 26% (9.4T)). SNR increases strongly with field strength. Over the entire cerebrum, the increase is 2.81±0.21 from 3T to 7T and 1.91±0.28 from 7T to 9.4 T. Maps of the parameters are shown in the figure. In addition, the relative changes of the parameter values with varying field are shown.

Discussion: While we could show the strong increase in intrinsic SNR with current coil technology, the drop in B_1 -homogeneity and T_2^* demand for improved imaging techniques to realize the full potential of 9.4 T.

References: [1] Shajan et al., MRM 2013, [2] Robson et al., MRM 2008

 ${\sf T_2}^*$, Transmit efficiency and SNR at different field strengths. Shown are the absolute parameter values and the field-dependent differences.

				T ₂ *		
	3 T	7 T	9.4 T	3 T	7 T	9.4 T
White	947 ±	1334	1427	47.9	27.3	21.6
	66.1	±21.7	±51.8	±6.0	±5.5	±4.5
Gray				56.5	30.9	24.8
				±11.0	±14.7	±11.6