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Target audience: High-resolution fMRI community; auditory neuroscience
Purpose: To explore the laminar tuning to features of natural sounds in human primary auditory cortex.

Introduction: Previous research showed that throughout the human auditory cortex, neurons with similar feature preference cluster together creating
large-scale maps (e.g. tonotopic maps)"?. Invasive animal studies and recent results using ultra-high field fMRI in humans suggest that another spatial
organization is implemented orthogonal to the cortical sheet. That is, neuronal preference to a subset of acoustic features is relatively stable throughout
cortical columns, while tuning to other acoustic features displays variability**. Columnar tuning is generally investigated with simple artificial stimuli such
as tones, yet the use of natural sounds would ensure ecological validity, elicit stronger responses in the cortex, and enable the exploration of cortical
tuning to features beyond frequency (e.g. temporal and spectral modulations). Thus, here we explore the feasibility of examining laminar frequency
preference based on responses to natural sounds.

Methods: Measurements were performed at 7T (Siemens) using a custom whole head 32 channel
loop transceiver and a high performance head gradient insert. The experiment was divided into three
sessions. In the first session, we acquired high-resolution anatomical data (T and proton density [PD]
weighted data; 0.6 mm isotropic) and gradient echo (GE) measurements of responses to amplitude
modulated tones in four frequency ranges (‘GE Tones’, 0.2-4 kHz; the GE measurements in this
session were made using same sequence as described below for the ‘GE natural sounds [NS]
session). The anatomical data were used for segmentation® and cortical layer sampling®. The
gray/white matter and GM/CSF boundary were defined on T+/PD images, the voxels’ distance to
those two boundaries was computed and subsequently grid sampling as implemented in
BrainVoyager QX was performed (resulting in n = 3 cortical depth dependent profiles; see Figure 1A
for resulting grids). In the second and third sessions, high-resolution (0.8 mm isotropic) gradient echo
(‘GE NS’; TE = 22.8 ms; slices = 36; TR = 2400 ms; TA = 1200 ms; GRAPPA = 3; multiband = 2) and
3D GRASE (‘GRASE NS’; TE = 27.9 ms; slices = 16; TR = 2000 ms; TA = 330 ms) images were
acquired, respectively, while 144 natural sounds (e.g. speech, animal cries) were played. Slice
placement was anatomically based, and included bilateral auditory cortex in the GE sessions, and left
primary auditory cortex (medial part of Heschl’s gyrus) in the GRASE session. In session two and
three, a short T, weighted scan was acquired for the purpose of realignment across sessions. Figure 1. Location of primary auditory cortex in the volume (A)

. . Lo . and on the surface (B). The three colors and red box show the
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typical of primary auditory cortex could still be discerned (see first column of Figure 3). Preliminary results
show both regions of consistent frequency preference in primary auditory cortex across cortical depths, and
cortical regions in which frequency dependence varies across the laminar depths.
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Discussion: Our preliminary results show the
feasibility of exploring responses to a large set of
natural sounds at submillimeter resolution in
human auditory cortex using high field fMRI. The
use of natural sounds will enable the exploration
of laminar tuning to features beyond frequency,
such as temporal and spectral modulations’.
Additionally, as responses to both tones and
natural sounds are collected, differences due to
sound complexity can be explored. Furthermore,

— " this dataset demonstrates the feasibility of

o investigating sound complexity using highly
specific T, weighted (3D GRASE) fMRI signals which have been shown to be more optimal
for columnar and layer specific applications®. However, compared to 3D GRASE, gradient
echo measurements, while being more biased towards surface effects, have the advantage
of covering the region of interest bilaterally with higher BOLD contrast.
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Figure 3. Large-scale tonotopic maps and frequency preference across cortical depths.
The black boxes indicate the approximate location of the grid, and the white lines show
the approximate location of Heschl's gyrus.
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