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Introduction: Eddy currents are inevitable responses of MRI gradient signals. Its characteristic is highly dependent on system structures and signal sequences. To 
implement efficient compensation techniques we need to know its transient and spatial characteristics on every MRI system. In this work, we have performed 
coupled circuit simulation [1-3] of eddy currents temporal and spatial responses for both open and closed-bore MRI systems. Eigen matrix techniques of solving 
differential equations have been implemented in the calculation process to calculate for large number of domains. FID measurement of eddy fields has been 
conducted by an NMR probe to verify our results. We have found good agreements between experiment and simulation. 
Methods and materials: In coupled-circuit method, eddy current conducting structures are divided into multiple layers along thickness. To consider eddy current 
distribution along length (and/or width) it is needed to divide each layer into slices. Though ideally layer-thickness should be infinitely thin, each layer is taken enough 
thin to consider constant eddy current [3]. Traditionally thickness is taken around 1/5th of the corresponding skin depth (δ) [1, 3]. Since decreasing the thickness 
increases efficiency and accuracy of characterizing eddy currents, we have taken thickness to be less than 1/5th of δ. But decreasing the layer thickness increases 
total number of slices or domains. System of differential equations becomes larger and solving this large number of differential equations takes much longer time, 
reduces efficiency and provides singularity problems. Coupled differential equation, ۻ௜௜ ௗ۷ሺ௧ሻௗ௧ ൅ ሻݐ௜۷ሺ܀ ൌ െۻ௜௦ ௗ௜ೞሺ௧ሻௗ௧ , where ۻ௜௜ is matrix of self-inductances Li and 
mutual inductances among subdomains, ۻ௜௦ is matrix of inductive couplings between gradient coil and slices, ܀௜ is resistance matrix of all slices, ݅௦ሺݐሻ is gradient coil 
current and I(t) is eddy current matrix. To compute inductive couplings between biplanar gradient coil for open MRI system and any other eddy current conducting 
structure, we have implemented solid-angle form of Ampere’s law [4, 5]. For computing all other inductive coupling and self-inductance matrices we followed 
formulas from Ref [6] and methods of Ref [1]. For a trapezoidal signal, above equation becomes nonhomogeneous for rising- and falling-ramps and homogeneous for 
constant portion. For these two cases we have implemented Eigen method algorithms of solving system of differential equations:  
Case 1: Homogeneous       Case 2: Nonhomogeneous 
For initial value homogeneous linear system of 

ௗ۷ሺ௧ሻௗ௧ ൌ ,ሻݐ۷ሺۯ      and    ۷ሺݐ଴ሻ ൌ ۷଴, 

(i) Compute the eigenvalues and eigenvectors of the coefficient matrix ۯ ൌ െۻ௜௜ିଵ܀௜  
(ii) Use eigenvalues and eigenvectors of ۯ to, respectively construct diagonal matrix ۲ and the change of basis matrix ۱ such that, ۷ሺݐሻ ൌ ,&   ܢ۱ ۲ ൌ ۱െ૚۱ۯ  ↔ ۯ   ൌ ۱۲۱െ૚ 

(iii) Write down general solution of decoupled systemௗܢௗ௧ ൌ →  ܢ۲ ܢ  ൌ ቎ܿଵ݁ఒభ௧⋮ܿ௡݁ఒ೙௧቏ 
(iv) Determine the coefficient matrix ܋ ൌ ۱ିଵ ቎ܫଵሺݐ଴ሻ݁ିఒభ௧బ⋮ܫ௡ሺݐ଴ሻ݁ିఒ೙௧బ቏ 
(v) The solution of the original (coupled) system will be, ۷ሺݐሻ ൌ  ܢ۱

For initial value nonhomogeneous equations, 
ௗܢௗ௧ ൌ ܢ۲ ൅ ۳ሺݐሻ, ۷ሺݐ଴ሻ ൌ ۷଴ 

where, ۳ሺݐሻ ൌ ۱ିଵ۰ ௗ௜ೞሺ௧ሻௗ௧ , we implement fundamental matrix method.  
(i) Expressed the fundamental matrix as ઴ሺݐሻ ൌ ቎࢜ଵଵ݁ఒభ௧ ଵଶ݁ఒమ௧࢜ … . ⋮૚௡݁ఒ೙௧࢜ ⋮ ௡ଵ݁ఒభ௧࢜⋮ ௡ଶ݁ఒమ௧࢜ … .  ௡௡݁ఒ೙௧቏࢜

where, ࢜௡ଵ, ࢜௡ଶ, …., ࢜௡௡ are the associated eigenvectors, and ߣଵ, ߣଶ, …., ߣ௡ 
are the eigenvalues of the corresponding homogeneous equation. 
(ii) The solution of the nonhomogeneous equations can be given by ࡵሺݐሻ ൌ ઴ሺݐሻ઴ሺ0ሻିଵ۷ሺݐ଴ሻ ൅ න ઴ሺݐሻ઴ሺݏሻିଵ௧

௧బ ۳ሺݏሻ݀ݏ 

To see the effectiveness of this approach, we have done simulation in Mathematica® for both open MRI (0.3 T) and close-bore MRI (9.4 T narrow bore 
superconducting magnet) systems. Responses of eddy currents in different slices are then implemented in Biot-Savart’s law to compute eddy magnetic fields. FID 
measurements have been conducted using an NMR probe and stepper motor positioning system to verify our simulation results. The experimental setup is shown in 
Fig. (a) for open MRI system. 
Results and discussion: Fig. (b), Fig (c) show spatial fields generated by eddy currents in local shielding box of open MRI system. Gradient signal ramp-up and ramp-
down duration was  170ߤs and flat-top duration was  1.06ms and corresponding δ was 1.60739݉݉. The thickness of brass plates of rectangular box was 0.3 mm. 
We took two layers along thickness (Z-axis) and 110 slices in each layer both along the length (X-axis) and width (Y-axis). Once we compute all the matrices which take 
less than 2 minutes, we can use these data for any gradient signals. It took less than one minute to solve overall system of equations. Fig. (d) shows eddy current time 
constants taken at different points in ROI. We have found a good agreement between simulation and experiments. In case of close-bore MRI system we considered 
eddy currents due to innermost copper layer. The cylindrical layer is of thickness 2mm with diameter and length 53.84 mm and 978 mm, respectively. The gradient 
signal was: ramp-up and ramp-down duration 200 ߤs and flat-top duration 600ߤs, δ was 0.93459 mm. We take 10 layers and 486 slices in each layer. Transient 
secondary field responses along the Z-axis are illustrated in Fig. (e) and (f), respectively for open and closed-bore MRI systems. We have also calculated cross terms of 
eddy fields (X-field for Gz coil of open MRI system is shown in Fig. (g)). Our approach is less time-consuming and efficient for simulating eddy currents in MRI systems. 
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