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Introduction: Magnetic forces around modern MRI scanners with powerful superconducting magnets have long been a major concern 
for operator and patient safety [1]. These safety concerns range from ferrous material in service tools or medical equipment to 
implants of patients. It is desired to know the spatial profile of magnetic force distribution which can serve as a guideline for handling 
ferrous objects around MRI magnets. It is known that the vectorial magnetic forces on ferrous objects depend on both the properties of 
background magnetic field and the object. The exact calculation of forces can only be achieved on a case by case basis using FEM 
based method. Therefore the consensus of the industry has been to provide a quantity which is a good estimation and indicator of 
magnetic forces. This quantity has been included in IEC 60601-2-33[2]. However, the mathematical definition of this quantity has 
been discussed recently where two suggestions are presented. Namely, the magnitude of magnetic force is proportional to (i) |(|࡮|)ߘ| or 
(ii)ቚቀ డడ௫ + డడ௬ + డడ௭ቁ ۰ቚ. In this paper, we make an effort to clarify the situation by demonstrating a very simple derivation for the earlier 

expression and proving that the latter expression does not hold in general.  
Method: The magnetic forces on ferrous objects in a background magnetic field can be calculated in two ways defined below [3]:  
                                                                       ۴ = ܕ)∇ ∙ ۰)    (1)    and      ۴ = ܕ) ∙ ∇)۰     (2) 
where ۴ is magnetic force, m is the magnetic moment of the ferrous object and B is magnetic flux density of MRI magnets. It can be 
shown these two expressions are equivalent when m is not spatially dependent [3]. Below we first derive proposition (i) from force 
definition (1). Since m is not spatially dependent and can be expressed as ߯௩۰ (߯௩ is the magnetic susceptibility), we have: 

 

                                                                      ۴ = સ(|۰||ܕ| cos (ߠ = ࢓| cos              (3)         (|࡮|)∇|ߠ
 

So it is clear that |ࡲ| ∝ |ࡲ| if the object is saturated and |(|࡮|)ߘ| ∝   .if the object is not saturated  |(|࡮|)ߘ||۰|
 Next we use force definition (2) to present the proof that proposition (ii), where |۴| ∝ ቚቀ డడ௫ + డడ௬ + డడ௭ቁ ۰ቚ, is not true in the general 

case. Since the object is small (big ferrous objects cannot be brought close to MRI), it can be assumed ݉௫ , ݉௬  and ݉௭  are 
approximately constant within the object and they are related by the following equations: 

                                                                      ݉௬ = ݉௫ + and    ݉௭    (4)     ߜ = ݉௬ +   (5)      ߛ

where ߜ and ߛ are real numbers. Take (4) & (5) into equation (2), we arrive at: 

                                                                       ۴ = ݉௫ ቀ డడ௫ + డడ௬ + డడ௭ቁ ۰ + ቀߜ డడ௬ + ߛ డడ௭ቁ ۰    (6) 

Let ۴ଵ = ݉௫ ቀ డడ௫ + డడ௬ + డడ௭ቁ ۰ and ۴ଶ = ቀߜ డడ௬ + ߛ డడ௭ቁ ۰, so ۴ = ۴ଵ + ۴ଶ. It is clear that |ࡲ૚| ∝ ቚቀ డడ௫ + డడ௬ + డడ௭ቁ ۰ቚ but for |۴| ∝ ቚቀ డడ௫ + డడ௬ + డడ௭ቁ ۰ቚ to be true, ۴ଶ must be equal to zero. Now let’s examine the conditions that constrain ۴ଶ to be zero. There are only five conditions that allow ۴ଶ to 
be zero. Below we show that each condition is highly specialized and does not hold for the field around an MRI magnet.  

Condition 1: if ߜ = ߛ = 0, then ۴ଶ = 0. This means ݉௫ = ݉௬ = ݉௭. Since ∝ ߯௩۰ , and ܤ௫, ܤ௬ and ܤ௭  vary widely around the MRI magnet, 
this condition cannot be satisfied. 
Condition 2: if డ۰డ௬ = డ۰డ௭ = 0, then ۴ଶ = 0. This leads to ۴ = ۴ଵ = ݉௫ ቚడ۰డ௫ቚ. However, considering the divergence free and curl free property of ۰, it requires  

డ۰డ௫ = 0. So the field is homogenous and force is zero. This condition obviously does not apply around an MRI magnet. 

Condition 3: if ߜ = 0, ߛ ≠ 0, ቚడ۰డ௬ቚ ≠ 0, ቚడ۰డ௭ቚ = 0, then ۴ଶ = 0. This condition combined with curl free property of  ۰ asks for ܤ௭ =  .ݐ݊ܽݐݏ݊݋ܿ
None of the B-component is constant around an MRI magnet, this condition cannot be met. 
Condition 4: if ߜ ≠ 0, ߛ = 0, ቚడ۰డ௬ቚ = 0, ቚడ۰డ௭ቚ ≠ 0,  then ۴ଶ = 0. Same reasoning as condition 3 applies. 

Condition 5: if ߜ డ۰డ௬ = ߛ− డ۰డ௭,  then ۴ଶ = 0. This condition demands the partial derivatives with respect to x and y are proportional to each 

other with constant ratio defined by ߜ  and ߛ  across all space. The magnetic fields generated by MRI magnets are governed by 
Laplace’s equation and the expansion of Green’s function solution gives 1/rn dependence for external field, and rn dependence for 
internal field. In any region of the space around MRI magnet, the partial derivatives of flux density cannot hold constant ratio between 
them. The derivation of multipole expansion of localized current source distribution [4] clearly reveals this point and will not be 
repeated here.     

Conclusion: In summary, we have considered all possible conditions under which ۴ଶ = 0 can be true. These are all very special cases 
which are not representative for the general situation where the magnetic force around MRI magnets is being evaluated. Therefore, |(|࡮|)ߘ|, not ቚቀ డడ௫ + డడ௬ + డడ௭ቁ ۰ቚ, should be used for magnetic force estimation around MRI magnets. 
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