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Introduction In this work, we analyze the potential of noise 
improvement in a closed-loop RF Cartesian feedback system [1,2] for 
power amplifier linearization by reducing the attenuation in the 
feedback loop of the system while making no change in the loop gain of 
the system. Ideally, the feedback path noise should dominate the total 
noise within the loop bandwidth of the system [3], and thus we would 
expect that the gain block inside the feedback path could play a role in 
manipulating the total noise reflected at the output. We could test this in 
the system by essentially reallocating some of the gain from the forward 
stage to the reverse stage, or vice versa, which is equivalent to shifting 
the position of our RF input into the system. Since this reduction in 
noise of the system involves changing the gain in the feedback path, the 
tradeoff here appears to be between the amount of noise in the linearized 
output signal of the closed loop system output and the gain of the 
system. Verifying if such a relationship holds would be useful in our 
understanding of the system and provide an extra degree of freedom for 
noise reduction. 

Materials and Methods We tested this on an RF Feedback system with 
Cartesian Compensation [1-2] for use at 1.5T. For the Cartesian feedback, we used the 
CMX998 chip (CML Microcircuits) that allowed us to adjust attenuation and phase response 
of our loop gain to ensure stability of the loop gain. The setup included a 60dB 200 W power 
amplifier. In Fig 1, block A contains the CMX998 and amplifier and has a transfer function 
response resembling a band-pass filter centered at 63.88MHz, or 1.5T. External attenuators 
indicated as block B and C in Fig 1 are added to set the loop filter response to have the desire 
peak gain and phase to ensure stability. We used the Medusa console [4] from our lab to drive 
the input of the system and to read a reference output signal.  
   To examine the change in noise with respect to gain of our system, we reallocated the 
attenuators between block B and C and measured the output of the closed loop system, to see 
how moving the RF input port within the loop could change noise properties at no cost in the 
loop gain. To examine potential effect on signal-to-noise ratio, for the different values of C 
block attenuation values, we adjusted the input signals such that each of the adjusted 
configurations have the same output reference voltage. We then measured and calculated the 
standard deviation of the noise at the output. 

Results and Discussion We altered the attenuation inside the feedback back across a range 
from -63db up to -30db by moving our RF input location. The loop gain peak for all 
configurations was set to approximately 20 dB. This means that the total attenuation of block 
B and C in Fig 1 will remain constant across all measured setups. The closed loop gain of the 
system, from quick analysis of the block diagram, should be at |H(ω)|=|BA(ω)/(1+BA(ω)C)|. 
We would thus expect the reverse path attenuators in C to set the closed loop gain when loop 
gain is sufficient and as expected, we see that with decreasing attenuation in the feedback 
path, we see increasing gain (Fig 2). By varying our attenuation from -63dB to -30dB, we 
noticed that our gain has decreased by a factor of 44 (33dB). 
    We also measured the noise performance of the feedback loop. Looking at the standard 
deviation of our measured voltage noise, we found that the system noise going from a 
feedback attenuation block from -63dB to -30dB decreases by a factor of 33.7 (31 dB).  

Conclusion Our results suggest that in this RF feedback configuration, by moving the 
location of the RF input and changing the closed loop system gain, we can control the amount of noise that is added into our system. This 
implies that in the future, we can consider lowering our gain with this technique in order to reduce noise and then drive our system with 
higher power inputs to achieve the desired output signal magnitude. We can use this gain and noise tradeoff in order to achieve linearity and 
desired noise performance from our feedback system. 
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Figure 1. The configuration setup. (Top) The abstracted picture 
of the system modules (Bottom) Inside of each block. A 
includes power amp and cmx 998 chip, B and C blocks 
comprised of attenuators. 

Figure 2. Output reference voltage gain 
plotted for different values of reverse path 

 

Figure 3. Noise standard deviation at set (0.05 
Vref) reference voltage output as function of 
feedback path attenuation. 
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