Harnessing Embedded Linux and Python for Stand-Alone MRI Applications
Pascal P Stang'? and Greig Scott®
'Procyon Engineering, San Jose, CA, United States, *Electrical Engineering, Stanford University, Stanford, CA, United States

Introduction

Advances in RF electronics, high-speed data converters, and multi-core R
processors have long fueled high-end MRI techniques such as parallel
imaging and real-time scanning. Yet these same technology advances can
also be leveraged to benefit small-scale MR. Indeed there is substantial
interest in applications including bench-top scanners for education, chemical
spectroscopy, and relaxometery, portable MR “mouse” systems, RF ablation
control, and interventional device safety monitoring [1-7]. We present a
compact stand-alone MRI console powered by embedded Linux and
programmed in Python to investigate the potential of such a platform to
deliver modern performance and versatility for NMR/MRI applications
constrained in size, power, cost, or user interface.

Methods 4
Hardware: Our compact stand-alone MRI console (Fig 1,2) is built around a pigyre 1: A block diagram of the compact MRI console. A linux-powered
BeagleBoneBlack commercially-available embedded computer platform [8]. BeagleBone embedded computer ($45) handles user interface, pulse
The BeagleBone is comprised of a TI AM3359 1GHz ARM Cortex-A8 sequencing, and image reconstruction duties without need for a separate PC.
System—on-Chip (SoC), 512MB DDR3 RAM, and 2GB eMMC Flash for Medusa RF and Gradient modules are connected via the BeagleBone GPMC
persistent storage. It also includes substantial /O resources for hardware to provide the hardware interfaces necessary for MR imaging.

interfacing including Ethernet, microSD slot, HDMI video output, and

-

&
2
£
[=]
@
=
©
(a]

numerous UART, SPI, 12C, and general-purpose I/O interfaces. Medusa RF LCD

Tx/Rx & Gradient modules [9] link directly with the Beaglebone General-
Purpose Memory Controller (GPMC) and provide the interfaces necessary for BeagleBone
performing MR imaging. A CircuitCo 7-inch 800x480 touchscreen LCD Embedded

serves as a display and user interface. Additional components needed for Computer

specific applications can be controlled by, and integrated into, the package.

Software: We configured the BeagleBone to run a reduced version of the RE Module
Ubuntu Linux OS. For flexibility, extensibility, and ease of development, all
high-level programming including the graphical user interface, pulse
sequence descriptions, and image reconstructions are written entirely in the
Python language. The Python PyQr and pqqtgraph packages are used to build
a versatile and fast user interface, while the numpy and scipy libraries provide
computation tools needed for sequence development and reconstruction akin
to those found in Mathworks Matlab. The RF and gradient hardware features ¢
are exposed to Python via simple low-level drivers written in C++. Gradient Module o
Results

We have implemented gradient echo and spin echo pulse sequences (Fig 3),
as well as supporting prescan tools. The RF subsystem covers 0-3T proton at
excite/receive bandwidths up to 500ksps, and gradient outputs runs up to
250ksps. The BeagleBone GPMC transports RF/gradient data at 28MB/sec
making real-time sequence execution possible. Image reconstruction of a
256x256 2DFT dataset is performed in 180ms without hardware acceleration,
and the Python UI attains plotting and image update rates of 10-25Hz. The
system measures 7.5x5x3 inches and power consumption is 9.5W (5V 1.9A)
making battery-powered portability easily possible. Component cost is ~$500.
Discussion

While using Medusa components enabled rapid development, redesigning
specifically for the BeagleBone would yield improved data rates and a ~50%
size reduction. The AM3359 SoC also contains real-time co-processors
(PRUs) and a NEON floating-point unit that could accelerate sequence
execution and reconstruction respectively. The choice of Python was key to
simple user-accessible development while maintaining low cost (no Matlab).
Python’s broad multi-platform support allows pulse sequences and user
interfaces to be developed and tested on any Mac, Windows, or Linux Figure 3: The complete imaging-capable console is about the size of a
machine before being deployed on the stand-alone console. hardback book. A 7-inch touchscreen LCD provides a versatile user
Conclusions interface, with visual GUI elements and pulse sequences programmed in
We have demonstrated a stand-alone user-programmable MRI console based Python. The data plot shown is a spin-echo captured on a GE 1.5T magnet.
on Linux and Python and adaptable to a wide variety of small-scale, portable,

or embedded MR applications. Continuing work is focused on enhancing performance and expanding the set of Python tools and pulse sequences.
References [1] https://gate.nmr.mgh.harvard.edu/wiki/Tabletop_MRIL [2] Twieg, ISMRM 2013 #0139. [3] Etezadi-Amoli, ISMRM 2013 #723. [4] Shultz, IEEE-TMI
2013 Vol31:4 p938. [5] Wright SM, MAGMA 2002. [6] www.magritek.com [7] pure-devices.com [8] www.beagleboard.org [9] Stang, ISMRM 2007 #925.

Funding: Procyon Engineering, NIH RO1IEB008108, PO1CA159992.

Figure 2: The major hardware components of the stand-alone console.

Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 1279.

