

Accelerating T₁-rho Cartilage Imaging Using k-t ISD with Locally-Adapted Thresholding and JSENSE

Yihang Zhou¹, Valentina Pedoia², Julien Rivoire², Yanhua Wang¹, Dong Liang³, Xiaojuan Li², and Leslie Ying¹

¹Department of Biomedical Engineering, Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY, United States, ²Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, United States, ³Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China

INTRODUCTION:

T₁-rho (T_{1ρ}) cartilage imaging provides information associated with cartilage matrix changes and enables the possibility of early stage cartilage degeneration detection [1]. However, acquisition of multiple echoes makes the T_{1ρ} acquisition process time consuming. Compressed sensing (CS) is a promising technique that accelerates the acquisition speed through undersampling the k-space below the Nyquist rate [2]. When integrated with parallel imaging (pMRI) [3, 4], even higher accelerations can be achieved [5, 6]. The application of both CS and pMRI in T_{1ρ} cartilage imaging could potentially reduce the acquisition time. In this study, we investigate the feasibility of an advanced CS-pMRI method in accelerating the T_{1ρ} quantification in cartilage imaging without compromising the accuracy.

METHODS:

Imaging techniques: The T_{1ρ} MR images of in-vivo human knee were acquired using a transmit - receive 8 channels knee coil on 3.0-T scanner (GE Healthcare) with a MAPS pulse sequence (time of spin-lock (TSL) = 0/2/4/8/12/20/40/80ms; spin-lock frequency: 500Hz; matrix size PE × FE × Echo × Slice = 128×192×8×28; field of view = 140mm; slice thickness = 4mm). To obtain the reduced acquisition retrospectively, the k-space data was randomly undersampled along the phase encoding direction at each echo time. Different sampling patterns are used at different TSLs. The central 32 lines of the k-space are fully sampled at all TSLs.

Reconstruction methods: We combine an advanced CS-based reconstruction technique, k-t ISD [7] with locally-adapted thresholding (named k-t LISD), and an advanced parallel imaging technique, JSENSE [8], to reconstruct the image sequence from the undersampled k-space data acquired at different TSLs. The fully sampled central 32 lines of the k-space at all times are used to estimate the initial coil sensitivity maps. The reconstruction process then alternates iteratively between k-t LISD for reconstruction of the image sequence and JSENSE for sensitivity estimation. The flowchart of the proposed method is shown in Fig. 1. Here, in k-t LISD, principle components analysis (PCA) is employed as the sparsifying transform along the temporal direction [9, 10]. In this sparse x-PCA space, the support (i.e., location of significant elements) is assumed to be $S = T \cup \Delta$, where T is the known part of the support S with a size $|T|$ and Δ is the unknown part with a size $|\Delta|$. With the known support T in CS reconstruction, we are able to restrict all the candidate sparse solutions to a smaller subspace which includes the support T by solving a truncated ℓ_1 minimization problem: $\min \|\mathbf{p}_\Delta\|_1, \text{ s.t. } \|\mathbf{d} - \mathbf{F}_x \mathbf{P} \mathbf{p}\|_2 \leq \varepsilon$, where \mathbf{d} is the undersampled k-space data, \mathbf{F}_x denotes the Fourier transform along frequency encoding direction, and \mathbf{P} represents the PCA. Since the support information is not known a priori, we detect the support iteratively in the x-PCA domain from the current reconstruction. Instead of using a global threshold as in [7], we apply different thresholds to different pixels according to the maximum intensity at this pixel. Specifically, the support is updated by thresholding the reconstructed signals in the x-PCA domain using spatially adaptive thresholds $\mu\tau_i$, where $\tau_i = \max(|\mathbf{p}_i|)$ for pixel i and μ is a weighting parameter that decreases with iterations. Such locally-adapted thresholding can improve the quantification accuracy in compartments with low SNR such as MT and MFC.

Data analysis: The cartilage were segmented semi-automatically in six compartments (LFC: lateral femoral condyle; LT: lateral tibia; MFC: medial femoral condyle; MT: medial tibia; Pat: patella; T: trochlea) using a program developed in-house. The T_{1ρ} map was reconstructed by fitting the T_{1ρ}-weighted images pixel by pixel. Quantification was compared between full sampled and undersampled images using different acceleration factors.

RESULTS:

The reconstruction results from different slices with accelerations of 3 and 3.5 are shown in Fig. 2. The T_{1ρ} maps are overlaid with the reconstructed cartilage images. It can be seen that the reconstructed T_{1ρ} maps show good agreement with that from full acquisition in all compartments. The larger errors in TRO and PAT are primarily due to the fact that patella and trochlea compartments have a relatively low SNR. When applying k-t LISD, as the threshold is adapted pixel-by-pixel, some of these low contrast features are suppressed as noise while some noise is detected as low-contrast signals. However, as can be seen, these pixels are outliers. The overall T_{1ρ} maps from acceleration 3 and 3.5 are consistent with that from full acquisition. This can be better appreciated in the statistical analysis. The mean values and the error percentage for all compartments of the accelerated reconstructions are calculated and plotted in Fig. 2 bottom. It can be seen that the overall error percentage is low (<2%) in all compartments for both accelerations of 3 and 3.5, except for PAT where the error is slightly higher with 1.66% for R3 and 5.99% for R3.5. The error in LT, MFC and MT are negligible (<1%). The mean error for all compartments is only 0.52% for 3x acceleration and 2.01% for 3.5x acceleration.

CONCLUSION:

Our preliminary results demonstrate the feasibility of accelerating T_{1ρ} quantification by factors of 3 and 3.5 using CS combined with parallel imaging. The in vivo reproducibility of cartilage T_{1ρ} quantification was reported to be approximately 5% [11]. The fitting error is significantly reduced by the proposed k-t LISD with JSENSE method compare with the earlier work reported [12] to combine CS with PI (ARC) without using correlation between images from different TSLs. The T_{1ρ} quantification calculated from accelerated acquisition using proposed reconstruction shows good agreement with the one without acceleration in all compartments with a negligible error percentage. Further study will explore using prospective sampling in in vivo human studies and the clinical significance.

REFERENCES: [1] X. Li et al, Osteoarthritis Cartilage 2007. [2] M. Lustig, et al, MRM 58: 1182-1195, 2007. [3] K.P. Pruessmann, et al, MRM 42: 952-962, 1999. [4] M.A. Griswold, et al, MRM 47: 1202-1210, 2002. [5] D. Liang, et al, MRM 62: 1574-1584, 2009. [6] R. Otazo, et al, MRM 64: 767-776, 2010. [7] D. Liang, et al, MRM 68: 41-53, 2012. [8] L. Ying, et al, MRM 57:1196-1202, 2007. [9] H. Jung, et al, MRM 61:103-116, 2009. [10] Z.-P. Liang, ISBI: 988-991, 2007. [11] X. Li et al, MRM 59: 298-307, 2008. [12] J. Rivoire, et al, ISMRM 2012.

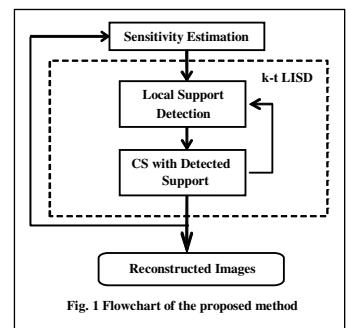


Fig. 1 Flowchart of the proposed method

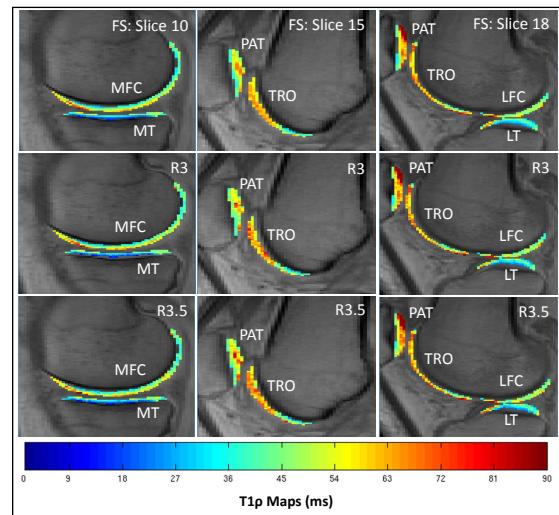


Fig. 2 T_{1ρ} maps overlaid on the CS reconstructed knee cartilages in different slices (Top). The mean value (Bottom) plots of all compartments for fully sampled (FS), 3x accelerated (R3) and 3.5x accelerated (R3.5) reconstructions.