

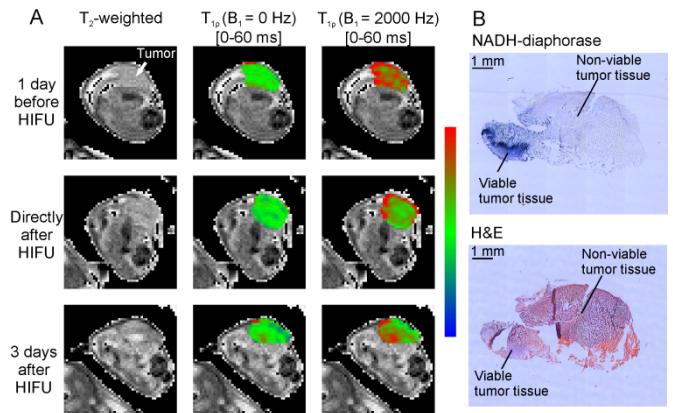
T_{1ρ} Mapping for the Evaluation of High Intensity Focused Ultrasound Tumor Treatment

Stefanie JCG Hectors^{1,2}, Rik PM Moonen^{1,2}, Gustav J Strijkers^{1,2}, and Klaas Nicolay^{1,2}

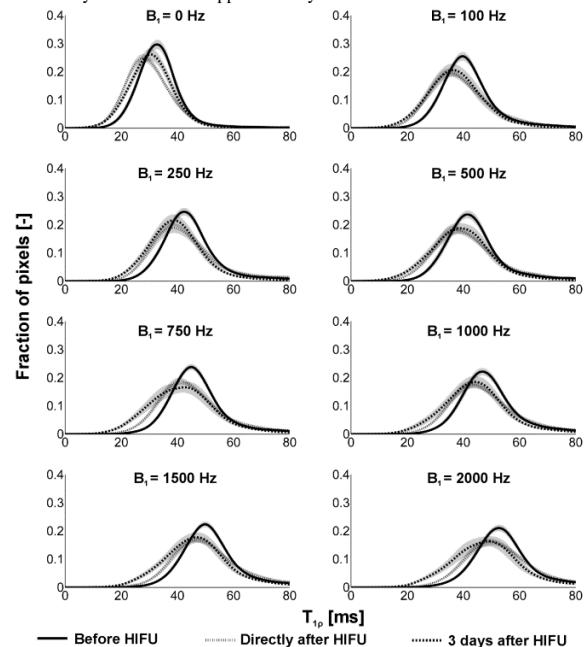
¹Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands, ²Center for Imaging Research and Education, Eindhoven, Netherlands

Introduction For the clinical application of High Intensity Focused Ultrasound (HIFU) for the treatment of malignant lesions, it is of key importance that residual tumor tissue can be distinguished from successfully ablated tissue. We have recently shown that amide proton transfer (APT) imaging¹ and multiparametric MR analysis based on T₁, T₂ and Apparent Diffusion Coefficient (ADC) data² are both promising MRI methods for the segmentation of HIFU-treated and non-treated tumor tissue. Another MRI method with potential sensitivity to HIFU-induced changes in the tumor tissue, such as coagulative necrosis, is T_{1ρ} imaging. Previously, changes in tumor T_{1ρ} after gene therapy³ and chemotherapy⁴ have been reported. The goal of the present study was to assess whether T_{1ρ} also provides contrast between HIFU-treated and non-treated tumor tissue.

Methods MRI (7T) of CT26 colon carcinoma-bearing (s.c. in hind limb) Balb/c mice was performed 1 day before (n=13), directly after (n=13) and 3 days after (n=7) HIFU treatment. The HIFU treatment consisted of partial ablation of the tumor with an 8-element therapeutic ultrasound transducer (TIPS, Philips). The multi-slice MRI protocol (FOV=4x4 cm², matrix=128x128) consisted of T₂-weighted imaging (TE=30 ms, TR=2000 ms, NA=1) and T_{1ρ} mapping (B₀- and B₁-compensated⁵ spin-lock preparation (spin-lock amplitude B₁=0, 100, 250, 500, 750, 1000, 1500 and 2000 Hz, spin-lock times TSL=5, 10, 20, 40, 80 ms) followed by GE-EPI read-out (TE=5 ms, TR=2000 ms, NA=2)). The T_{1ρ} measurement at B₁=0 Hz is equivalent to a T₂ measurement. After sacrifice, tumors were dissected and processed for NADH-diaphorase and H&E staining.


Results Representative MRI results are shown in Figure 1. The HIFU treatment did not lead to contrast in the T₂-weighted images. This was confirmed by absence of visible changes after HIFU in the T_{1ρ} maps at B₁=0 Hz, which essentially represent T₂ maps. Before HIFU, T_{1ρ} maps at B₁=2000 Hz had a slightly more heterogeneous appearance than those at B₁=0 Hz, indicative of a larger variation in tumor T_{1ρ} at higher amplitudes. At both time points after HIFU, a large region of decreased T_{1ρ} was observed at B₁=2000 Hz. Histology confirmed extensive necrosis in the tumor tissue. Average tumor T_{1ρ} distributions indeed showed a larger spread in tumor T_{1ρ} at higher spin-lock amplitudes before HIFU (Figure 2). Furthermore, a shift toward lower T_{1ρ} values after HIFU was observed for all spin-lock amplitudes. The shift in T_{1ρ} values at 3 days after HIFU treatment was larger with increasing spin-lock amplitude. Quantitative analysis of the average T_{1ρ} value in the tumors at the different experimental time points (Figure 3A) showed a significant decrease in the average T_{1ρ} at 3 days after HIFU treatment as compared to baseline for spin-lock amplitudes higher than or equal to 100 Hz. The average $\Delta T_{1\rho}$ between 3 days after and before HIFU clearly decreased toward larger negative values with increasing spin-lock amplitude (Figure 3B). Statistical analysis confirmed a significant effect of spin-lock amplitude on $\Delta T_{1\rho}$ at 3 days after HIFU (ANOVA for repeated measures, P=0.048). At 3 days after treatment, the $\Delta T_{1\rho}$ values at B₁ strengths above 100 Hz were significantly lower (more negative) than at B₁=0 Hz. Furthermore, the $\Delta T_{1\rho}$ value at 2000 Hz was significantly lower than the $\Delta T_{1\rho}$ values at B₁ strengths between 0 and 1000 Hz.

Discussion and Conclusion The data provide evidence that T_{1ρ} mapping gives superior contrast between HIFU-treated and non-treated tumor tissue at 3 days after HIFU as compared to T₂ mapping. Although only partial tumor ablation was performed, global analysis of the average T_{1ρ} values in the whole tumor already showed a significant difference between tumor T_{1ρ} before and at 3 days after HIFU, indicative of substantial T_{1ρ} contrast between HIFU-treated and non-treated tumor tissue. T_{1ρ} imaging may thus be a suitable MR method for the evaluation of HIFU treatment. Clinical translation of the method seems feasible, since significant contrast between HIFU-treated and non-treated tissue was already observed at B₁=100 Hz, which is compatible with clinical SAR constraints.


Acknowledgement This research was supported by the Center for Translational Molecular Medicine (VOLTA).

References ¹Hectors et al. Magn Reson Med 2013;doi:10.1002/mrm.25000

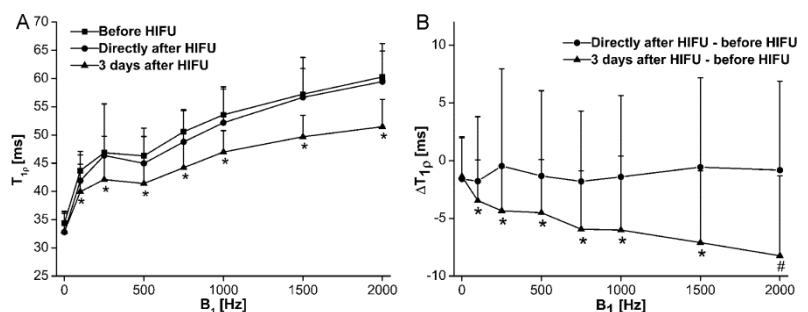

²Hectors et al. Proc Ann Meeting ISMRM 2012:4626 ³Kettunen et al. Radiology 2007;243:796-803. ⁴Duvvuri et al. Cancer Res 2001;61(21):7747-7753 ⁵Witschey et al. J Magn Reson 2007;186(1):75-85.

Figure 1 A) Representative examples of MRI of tumor-bearing legs before and after HIFU treatment. T_{1ρ} values at B₁=0 Hz and B₁=2000 Hz are overlaid on the tumor pixels in the T₂-weighted images. B) NADH-diaphorase and H&E stained tumor sections obtained 3 days after HIFU at approximately the same location within the tumor.

Figure 2 Average tumor T_{1ρ} distributions at the different experimental time points for all assessed spin-lock amplitudes. The transparent grey bands represent the standard error.

Figure 3 A) Mean \pm SD tumor T_{1ρ} at the different experimental time points as function of the B₁ strength. * denotes a significant difference between before and after HIFU (P<0.05, two-sided paired t-test). B) Mean \pm SD $\Delta T_{1\rho}$ values between both time points after HIFU and before HIFU as function of the B₁ strength. * indicates a significantly lower (more negative) $\Delta T_{1\rho}$ value than at B₁=0 Hz (P<0.05, one-sided paired t-test). # indicates a significantly lower $\Delta T_{1\rho}$ value than at all other spin-lock amplitudes except 1500 Hz (P<0.05, one-sided paired t-test).