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Despite important progresses in the last decades, the development of Magnetic Resonance 
Spectroscopy (MRS) approaches in the Clinic remains significantly slower than the widespread 
clinical applications of its imaging counterpart (MRI). Probably the most fundamental 
advantage of MRS is its chemical specificity, allowing for the non-invasive characterization of 
metabolite profiles and their changes with time, in normal and diseased tissues of animals and 
humans. The clinical implementation of this important advantage has been, however, 
hampered by important limitations in sensitivity and resolution demanding, progressively, 
drastic technological advances as higher field magnets, improved field homogeneity, advanced 
volume localization techniques and sophisticated spectral acquisition and processing 
algorithms. Many of these developments are not presently accessible in most clinical imaging 
centers, making it difficult to implement successfully the MRS approach widespread in the 
clinic. These limitations have not hampered, however, the impressive development of MRS 
approaches in preclinical research, where very high field magnets, specialized personnel and 
powerful software packages have endowed MRS with a prominent role in the evaluation of 
animal models of disease, drug development and therapy design. 

Probably the most general landmark in the development and outcome of any pathology is the 
appearance of energy limitations, leading eventually to energy failure and death of the 
diseased tissues. These circumstances result always in important adaptive metabolic responses 
that constitute the metabolic fingerprints of the pathological development, as well as of its 
response to therapy. In the following, we shall support that MRS from different nuclei, is well 
endowed to detect these metabolic alterations, many times, much earlier than the 
morphological alterations observable later by MRI.  

1H MRS 

Taking the brain as an example, 1H MRS provides a robust fingerprint of metabolites revealing 
healthy or diseased metabolism in animal models and humans [1-6]. Relative decreases in N-
acetyl-aspartic acid (NAA) are thought to reveal neuronal loss, increases in lactate (Lac) are 
associated to hypoxia and enhanced glycolitic contribution, lipid resonance (Lip) increases are 
normally observed in hypoxic tumor areas, alterations in the total creatine resonance (tCr) are 
thought to represent alterations in energy metabolism, changes the total Choline resonance 
(tCho) reflect changes in phospholipid metabolism, and alterations in the myo-inositol (Ino) 
content reveal inflammatory responses and osmolite volume regulation. In the prostate, 
alterations in the citrate levels have been correlated with malignity of the lesions [7, 8]. In 
addition to these metabolites, easily detectable even in low field clinical scanners (1,5T), up to 
fourteen cerebral metabolites may become detectable in higher field scanners, including the 
amino acids glutamate, glutamine, gaba and taurine among other metabolites. 1H MRS 
provides thus, the most comprehensive, non invasive, metabolic profiling method available to 
date, useful in the diagnosis and prognosis of cancer, neurodegenerative diseases and ischemic 
episodes. 
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31P MRS 

31P NMR was the earliest MRS implemented providing direct information on the bioenergetics 
of skeletal and cardiac muscle, brain and tumors, because of the direct detection of ATP, PCr, 
Pi, Phosphomonester (PME) and Phosphodiester (PDE) resonances. 31P NMR was mainly used 
to investigate cerebral energetics in the healthy brain, as well as in cerebral tumors [9-11]. In 
the latter sense, 31P NMR pioneered the development of the pattern recognition algorithms 
implemented for the intelligent diagnosis of tumors [12-15]. An important clinical multicenter 
study merits special mention here, illustrating the diagnostic potential of 31P NMR in oncology 
[16, 17]. 

13C NMR (and hyperpolarization) 

13C NMR has been probably the slowest MRS approach to be incorporated to the clinic. The 
low natural abundance of 13C required the use of relatively expensive 13C enriched isotopes, 
specialized volume localization and proton decoupling techniques and sophisticated 
mathematical modeling approaches. Despite its drawbacks, 13C NMR provides unique 
information on cerebral metabolism and its compartmentation, the neuronal and glial 
tricarboxylic acid cycle rates, and the transcellular glutamate-glutamine or gaba cycles and in 
vivo neurotransmission [18-22]. Nevertheless, the clinical applications of 13C MRS remained 
limited by the inherently low sensitivity of the technique [23]. 

The recent advent of 13C hyperpolarization strategies has improved spectacularly the previous 
signal to noise limitations, at the expense of very fast technologies for 13C acquisition, 
observing only the longest relaxation time hyperpolarized 13C carboxylic carbons [24-29]. 
Although mainly implemented in preclinical 13C NMR laboratories, the future impact of this 
technique in the clinic is considered feasible [30], providing information on tumor pH, pyruvate 
dehydrogenase flux and redox state, with comparable spatial resolution to the nuclear 
medicine PET or SPECT techniques. 

Finally, other nuclei are conveniently available for MRS approaches including mainly 19F NMR 
[31] and 17O NMR [32] 

Conclusion 

The advance of clinical MRS approaches in the last decades cannot be underscored, but 
probably remains still insufficient for wide spread, routine, clinical applications except in 
frontier clinical research centers. The current limitations of clinical MRS appear to be mostly 
due to economic constrains and educational or translational difficulties, rather than to an 
insufficient supply of a wealth of relevant diagnostic and prognostic information. On these 
grounds, the main promise of MRS as the most powerful, specific, non-invasive tool, for 
personalized diagnosis and treatment remains intact. 
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