

Title of Talk: Chemical Exchange Saturation Transfer: The Promise

Peter C.M. van Zijl

Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine; F.M. Kirby Research Center, Kennedy Krieger Research Institute, 707 N. Broadway, Baltimore, MD 21205.

Email: pvanzijl@mri.jhu.edu

Highlights:

- 1) Performing contrast studies with imaging sensitivity and spectroscopic specificity, while still allowing standard anatomical MRI to be performed without interference.
- 2) Unlimited potential for the generation of novel paramagnetic and diamagnetic contrast agents
- 3) Possibility of designing pulse sequences specifically for certain agents
- 4) Biodegradable non-paramagnetic contrast agents are possible, for instance sugars.
- 5) Endogenous contrast for imaging of pH, tumor grade, and tissue metabolites.
- 6) Fast translation to the clinic for many agents

Brief history of the field: Chemical exchange saturation transfer or “CEST” MRI was first proposed by Balaban and coworkers.^{1,2} It was then quickly picked up by others³⁻⁶ and has, in the last decade evolved into a promising novel technology with great potential for clinical translation. In December of 2013, the original 2000 CEST paper had been cited 449 times (google scholar). For some recent reviews, see⁷⁻¹⁴

The contrast explained:¹² MRI has great sensitivity (55 M water concentration and thus 110 M protons) and allows high-resolution anatomical imaging. However, it often lacks specificity. MR spectroscopy, on the other hand, has great specificity (different chemicals have multiple and different resonances), but low sensitivity (mM concentrations). CEST allows some of the specificity of MRS to be combined with the sensitivity of MRI. CEST can detect low concentration molecules if they contain groups with exchangeable protons, such as for instance amide (-NH), amine (NH₂), imino (-N(H)-) and hydroxyl units. These protons can be labeled magnetically using frequency-specific saturation or selective pulsed approaches, and this label is subsequently transferred to the water via exchange. Due to the large size of the water pool, an unlabeled proton will come back in place and the process is continuously repeated. If this labeling and transfer can be performed efficiently, this will lead to large signal enhancements that become visible in the water signal intensity and thus can be imaged. These generally are enhancements by a factor of 100 -1000. Currently, the largest enhancements achieved have been for paramagnetic CEST (paraCEST) shift agents in liposomes, for which micromolar to nanomolar concentrations can be detected via the water signal.^{15,16}

Exogenous CEST agents: Current MRI contrast agents are relaxation based and often distort or interfere with the anatomical contrast. Because CEST agents are of low concentration, their presence without labeling does not affect the normal MRI signal and all normal imaging approaches can be applied without agent-based artifacts/interference because the effect of the agent can be turned on and off with radiofrequency (RF) labeling. In addition, contrary to commonly used agents for MRI that are paramagnetic, CEST allows the design of both paramagnetic and diamagnetic (diaCEST) agents. For paraCEST agents, lanthanides as well as other metals¹⁷⁻¹⁹ are being studies. This greatly expands the possibility for designing new agents with many different functional properties. Such compounds can for instance have exchangeable proton groups with one or more different frequencies. Alternatively, multiple agents (agent cocktails) with different frequency shifts with respect to the water frequency can be used. The possibility of frequency-specific labeling increases the specificity of the agents and can be seen as analogous to optical spectroscopy. Colors can be assigned to the resonances^{20,21} to exploit

this in the contrast display. In addition to frequency-specific contrast, one can also design agents based on a certain exchange rate of the protons. Since the proton exchange rate often depends on pH and temperature, such agents can then be used to image these parameters. The fact that multiple parameters (frequency shift, exchange rate) cause contrast and the fact that the contrast can be turned on and off or built up as a function of time can be used to design specific pulse sequences to detect specific type agents or to separate the signal of the agents from the background. Efforts to design such sequences are only just starting.²²⁻²⁶

Over the last decade a large group of CEST agents with different functional properties have been designed,⁷⁻¹⁴ including some sensitive to metabolism, enzyme kinetics,²⁷ ion binding, etc. Reporter genes based on CEST have also been proposed.²⁸ However, this is just the beginning of limitless possibilities. A great strength of being able to use diamagnetic compounds is that simple biodegradable agents such as sugars and peptides suddenly become potential contrast agents. For instance, recent studies have shown the potential of using normal D-glucose as an MRI contrast agent for imaging tumor glucose uptake.^{29,30}

Endogenous CEST contrast:

Tissue contains metabolites, proteins/peptides and carbohydrates. Basically, it therefore contains a collection of CEST agents that can be activated using RF. The first endogenous agent detected *in vivo* was urea.³¹ Soon after, Zhou et al. showed the possibility to use the signal of water-accessible amide protons in tissue for CEST detection.⁶ This so-called amide-proton transfer (APT) weighted MRI can be used to image pH changes during ischemia due to the strong sensitivity of the amide exchange rate on pH in the physiological pH range.^{6,32} Subsequently, APT-weighted MRI was shown to allow the imaging of tumor tissue without interference by edema.³³ Other endogenous tissue contrast reported has been for glucosaminoglycans in the knee,³⁴ glycogen in the liver³⁵ and glutamate, myoinositol and creatine in brain and muscle³⁶⁻³⁸. In addition, bacteria and viruses also contain many CEST compounds, possibly allowing them to be imaged,³⁹ e.g. during infection. However, care has to be taken with assignments to specific compounds, because the signals of amide, amine and hydroxyl groups overlap and also may interfere with direct water saturation and conventional semi-solid magnetization transfer contrast (MTC). For instance, in the muscle, glycogen and creatine signals contribute. Fortunately, in the case of tumors MTC and APT/CEST effects seem to be additive allowing strong contrast to be generated. This contrast also can be used to separate recurrent tumor from treatment necrosis,⁴⁰ which has not been possible before. The use of frequency and exchange rate specific pulse sequences is expected to allow more specific detection of different endogenous agents in the near future.

Fast translation to the clinic: The availability of endogenous agents and biodegradable agents leads to great potential for fast clinical translation of CEST technology. Some already being applied are based on endogenous CEST contrast. The first is the study of brain tumors using APTw contrast, which is already being studied by several groups.⁴¹⁻⁴⁴ With respect to exogenous agents, there is potential for using previously approved agents from other imaging modalities (CT)^{45,46} or from clinical testing for other purposes such as the glucose tolerance test (glucose, dextran).

Conclusion: The new CEST contrast has unlimited potential for the generation of new contrast agents with multiple functionalities. Both paramagnetic and diamagnetic exogenous agents can be designed and the contrast can be turned on and off using RF. Many FDA approved compounds contain exchangeable protons and have potential as CEST MRI agents, including several that are biodegradable. Endogenous CEST contrast is now already being tested in the clinic. The field is just starting and what we are seeing is the tip of the iceberg.

References:

1. Ward, K.M., Aletras, A.H. & Balaban, R.S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). *J Magn Reson* **143**, 79-87 (2000).
2. Ward, K.M. & Balaban, R.S. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). *Magn Reson Med* **44**, 799-802 (2000).
3. Aime, S., *et al.* Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. *Magn Reson Med* **47**, 639-648 (2002).
4. Goffeney, N., Bulte, J.W., Duyn, J., Bryant, L.H., Jr. & van Zijl, P.C. Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. *J Am Chem Soc* **123**, 8628-8629 (2001).
5. Zhang, S., Winter, P., Wu, K. & Sherry, A.D. A novel europium(III)-based MRI contrast agent. *J Am Chem Soc* **123**, 1517-1518 (2001).
6. Zhou, J., Payen, J.F., Wilson, D.A., Traystman, R.J. & van Zijl, P.C. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. *Nat Med* **9**, 1085-1090 (2003).
7. Aime, S., Castelli, D.D., Crich, S.G., Gianolio, E. & Terreno, E. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. *Acc Chem Res* **42**, 822-831 (2009).
8. Chan, K.W., Bulte, J.W. & McMahon, M.T. Diamagnetic chemical exchange saturation transfer (diaCEST) liposomes: physicochemical properties and imaging applications. *Wiley Interdiscip Rev Nanomed Nanobiotechnol* **6**, 111-124 (2014).
9. Liu, G., Song, X., Chan, K.W. & McMahon, M.T. Nuts and bolts of chemical exchange saturation transfer MRI. *NMR Biomed* **26**, 810-828 (2013).
10. Sherry, A.D. & Woods, M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. *Annu Rev Biomed Eng* **10**, 391-411 (2008).
11. Terreno, E., Castelli, D.D. & Aime, S. Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents. *Contrast Media Mol Imaging* **5**, 78-98 (2010).
12. van Zijl, P.C. & Yadav, N.N. Chemical exchange saturation transfer (CEST): what is in a name and what isn't? *Magn Reson Med* **65**, 927-948 (2011).
13. Vinogradov, E., Sherry, A.D. & Lenkinski, R.E. CEST: from basic principles to applications, challenges and opportunities. *J Magn Reson* **229**, 155-172 (2013).
14. Zhou, J. & van Zijl, P. Chemical exchange saturation transfer imaging and spectroscopy. *PROGR. IN NMR SPECTR* **48**, 109-136 (2006).
15. Terreno, E., *et al.* Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications. *Chem Biodivers* **5**, 1901-1912 (2008).
16. Terreno, E., *et al.* Osmotically shrunken LIPOCEST agents: an innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. *Chemistry* **15**, 1440-1448 (2009).
17. Dorazio, S.J., Olatunde, A.O., Spernyak, J.A. & Morrow, J.R. CoCEST: cobalt(II) amide-appended paraCEST MRI contrast agents. *Chem Commun (Camb)* **49**, 10025-10027 (2013).
18. Dorazio, S.J., Tsitovich, P.B., Siters, K.E., Spernyak, J.A. & Morrow, J.R. Iron(II) PARACEST MRI contrast agents. *J Am Chem Soc* **133**, 14154-14156 (2011).
19. Olatunde, A.O., Dorazio, S.J., Spernyak, J.A. & Morrow, J.R. The NiCEST approach: nickel(II) paraCEST MRI contrast agents. *J Am Chem Soc* **134**, 18503-18505 (2012).
20. McMahon, M.T., *et al.* New "multicolor" polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. *Magn Reson Med* **60**, 803-812 (2008).

21. Yang, X., *et al.* Salicylic acid and analogues as diaCEST MRI contrast agents with highly shifted exchangeable proton frequencies. *Angew Chem Int Ed Engl* **52**, 8116-8119 (2013).
22. Friedman, J.I., McMahon, M.T., Stivers, J.T. & Van Zijl, P.C. Indirect detection of labile solute proton spectra via the water signal using frequency-labeled exchange (FLEX) transfer. *J Am Chem Soc* **132**, 1813-1815 (2010).
23. Vinogradov, E., Soesbe, T.C., Balschi, J.A., Sherry, A.D. & Lenkinski, R.E. pCEST: Positive contrast using Chemical Exchange Saturation Transfer. *J Magn Reson* **215**, 64-73 (2012).
24. Xu, J., *et al.* Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI. *Magn Reson Med* (2013).
25. Yadav, N.N., *et al.* Detection of rapidly exchanging compounds using on-resonance frequency-labeled exchange (FLEX) transfer. *Magn Reson Med* **68**, 1048-1055 (2012).
26. Zu, Z., Li, K., Janve, V.A., Does, M.D. & Gochberg, D.F. Optimizing pulsed-chemical exchange saturation transfer imaging sequences. *Magn Reson Med* **66**, 1100-1108 (2011).
27. Li, Y., Sheth, V.R., Liu, G. & Pagel, M.D. A self-calibrating PARACEST MRI contrast agent that detects esterase enzyme activity. *Contrast Media Mol Imaging* **6**, 219-228 (2011).
28. Gilad, A.A., *et al.* Artificial reporter gene providing MRI contrast based on proton exchange. *Nat Biotechnol* **25**, 217-219 (2007).
29. Chan, K.W., *et al.* Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. *Magn Reson Med* **68**, 1764-1773 (2012).
30. Walker-Samuel, S., *et al.* In vivo imaging of glucose uptake and metabolism in tumors. *Nat Med* **19**, 1067-1072 (2013).
31. Dagher, A.P., Aletras, A., Choyke, P. & Balaban, R.S. Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. *J Magn Reson Imaging* **12**, 745-748 (2000).
32. Sun, P.Z., Zhou, J., Sun, W., Huang, J. & van Zijl, P.C. Detection of the ischemic penumbra using pH-weighted MRI. *J Cereb Blood Flow Metab* **27**, 1129-1136 (2007).
33. Zhou, J., Lal, B., Wilson, D.A., Laterra, J. & van Zijl, P.C. Amide proton transfer (APT) contrast for imaging of brain tumors. *Magn Reson Med* **50**, 1120-1126 (2003).
34. Ling, W., Regatte, R.R., Navon, G. & Jerschow, A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). *Proc Natl Acad Sci U S A* **105**, 2266-2270 (2008).
35. van Zijl, P.C., Jones, C.K., Ren, J., Malloy, C.R. & Sherry, A.D. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). *Proc Natl Acad Sci U S A* **104**, 4359-4364 (2007).
36. Cai, K., *et al.* Magnetic resonance imaging of glutamate. *Nat Med* **18**, 302-306 (2012).
37. Haris, M., Cai, K., Singh, A., Hariharan, H. & Reddy, R. In vivo mapping of brain myo-inositol. *Neuroimage* **54**, 2079-2085 (2011).
38. Kogan, F., *et al.* Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. *Magn Reson Med* **71**, 164-172 (2014).
39. Liu, G., *et al.* Noninvasive imaging of infection after treatment with tumor-homing bacteria using Chemical Exchange Saturation Transfer (CEST) MRI. *Magn Reson Med* **70**, 1690-1698 (2013).
40. Zhou, J., *et al.* Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. *Nat Med* **17**, 130-134 (2011).
41. Jia, G., *et al.* Amide proton transfer MR imaging of prostate cancer: a preliminary study. *J Magn Reson Imaging* **33**, 647-654 (2011).

42. Tietze, A., *et al.* Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI. *NMR Biomed* (2013).
43. Togao, O., *et al.* Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. *Neuro Oncol* (2013).
44. Zhou, J., *et al.* Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. *J Magn Reson Imaging* **38**, 1119-1128 (2013).
45. Aime, S., *et al.* Iopamidol: Exploring the potential use of a well-established x-ray contrast agent for MRI. *Magn Reson Med* **53**, 830-834 (2005).
46. Chen, L.Q., *et al.* Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. *Magn Reson Med* (2013).