

Measuring absolute CMRO₂ using Asymmetric Spin Echo and hyperoxic calibrated BOLD

Alan J Stone¹, Kevin Murphy¹, Nicholas P Blockley², Ashley D Harris^{3,4}, and Richard G Wise¹

¹CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom, ²FMRIB, University of Oxford, Oxford, United Kingdom, ³Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States, ⁴F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States

Target Audience: Researchers and clinicians interested in a quantitative measure of absolute cerebral oxygen metabolism.

Purpose: Dual calibrated fMRI (dcfMRI) offers an MR technique capable of measuring absolute CMRO₂¹⁻³ regionally. It is an extension of the calibrated BOLD methodology^{4,5}. CBF and BOLD time-series are acquired during a hypercapnic-hyperoxic (HC-HO) respiratory manipulation and estimates of absolute CMRO₂ are produced using a BOLD signal model. However hypercapnia (HC) is associated with air hunger, intolerance⁶ and sensory stimulation⁷ as well as some reports of it modulating CMRO₂ itself⁸. A key parameter in the models is M, the maximum BOLD signal change at [dHb]=0. The potential to relate M to R_{2'} is reported⁹ and is given as M = TE · R_{2'}. The measure of R_{2'} with asymmetric spin echo (ASE) has been demonstrated¹⁰. The ability of ASE to measure M presents an opportunity to replace the use of HC in dcfMRI, making dcfMRI more comfortable and convenient to implement.

Theory: An ASE pulse sequence with τ shift is shown in **Fig1a**. The shifted 180° pulse allows R_{2'} weighting of the signal described by **Eqn1**. Hyperoxia (HO) calibrated BOLD⁵, measures BOLD signal change caused by increasing arterial oxygen content (C_aO₂) and is described by **Eqn2**. In standard hyperoxic calibrated BOLD, M is estimated with both measured ($\frac{\Delta S}{S_0}$, $\Delta C_a O_2$) and assumed (ϕ , [Hb], S_vO₂, β) model parameters. However if M is known, then S_vO₂ can be given by **Eqn2**. Assuming arterial blood is fully saturated (OEF = 1 - S_vO₂) and CBF can be measured using ASL, absolute CMRO₂ is given by Fick's principle, **Eqn3**. This is analogous to the dcfMRI approach taken by *Bulte et al.*¹ where M is given by HC calibration.

Methods: 8 normal healthy participants (aged 24 - 39) were scanned on a 3T GE HDx MRI using a protocol lasting ~15mins. All participants had high-res structural scans available. CBF and BOLD data were acquired with a dual GRE, spiral readout, PICORE QUIPSSII acquisition (TR/TE₁/TE₂=2.2s/3ms/29ms, FOV 22cm, matrix 64x64, 12 slices of 7mm thick (1mm gap), TI₁/TI₂=700/1600ms, 20cm tag thickness) during a HO respiratory challenge lasting 9 mins **Fig1b**. The same anatomical area was scanned using an ASE spiral acquisition with τ = 0, 20, 25 & 30ms. τ was chosen in the monoexponential regime of the signal model¹¹. A GRE readout with spiral k-space acquisition was used (TE=44ms, TR=3s, flip angle 90°). In-plane resolution was the same as for the earlier dual echo scan but 32 slices with 2mm thickness (1mm gap) were acquired. Smaller slice thickness reduced the effects B₀ inhomogeneities¹². 20 volumes (1min) were acquired at each τ . Two GRE's were collected at TE = 7 & 9 ms to correct for through slice dephasing. Each ASE(τ) was averaged over 20 volumes to give S_{ASE(τ)} maps and corrected for signal attenuation due to through-slice dephasing using a sinc function¹¹. Mean grey matter (GM) signal, S_{ASE(τ)}, was extracted using GM segmented ROI's from the high resolution images. These ROI measures were then used to produce estimates of M from the different τ acquisitions giving M₁₂₀, M₁₂₅ and M₁₃₀ using **Eqn1** and M_{fit}, was determined by fitting **Eqn1** to all τ 's. GM BOLD and CBF ROI time-series were produced alongside P_{ET}O₂ time-series, periods of normoxia were averaged as were periods of HO to estimate changes from baseline. During HO no change in CBF was assumed. C_aO₂, was calculated from P_{ET}O₂. M_τ's were then used in **Eqn2** to measure S_vO₂. Baseline CBF was taken from periods of normoxia and used with S_vO₂ to calculate absolute CMRO₂ **Eqn3**.

HO-M _τ	M	S _v O ₂	CMRO ₂
τ=Fit	0.11 ± 0.01	0.05 ± 0.14	189 ± 37
τ=30ms	0.10 ± 0.01	0.48 ± 0.14	197 ± 37
τ=25ms	0.10 ± 0.01	0.53 ± 0.14	178 ± 38
τ=20ms	0.08 ± 0.02	0.63 ± 0.14	140 ± 35
CBF _{base} = 50 ± 10 ml/100g/min			

Table 1: Group mean M, S_vO₂ and CMRO₂ (μmol/100g/min) values in GM measured using combined ASE- M_{R_{2'}} & HO calibrated BOLD.

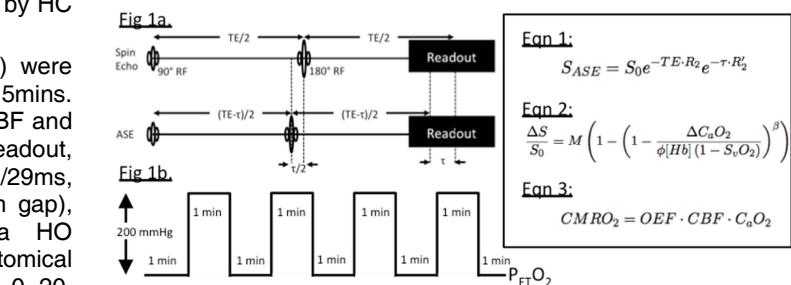


Figure1: Fig1a is a schematic demonstrating the τ shift in ASE. Fig1b shows the timing of the hyperoxic respiratory manipulation. Eqns. 1, 2 & 3 are used in the Theory section.

Results & Discussion: **Tab1** shows group mean M, S_vO₂ and CMRO₂ values in GM (N=8). Values of M measured using ASE vary with τ . This has previously been observed as changes in R_{2'} with τ and has been attributed to the multi-compartment structure of brain tissue¹³. As a result values of S_vO₂ and CMRO₂ vary with τ but are in the range of accepted values from PET¹⁴ and MR³. Further work is required to optimise the τ used which could be chosen to localise the ASE signal to the relevant vasculature to measure S_vO₂ (venules and veins).

Conclusion: Using ASE to measure R_{2'} and infer M alongside a hyperoxic calibrated BOLD technique has the potential to provide regional measures of S_vO₂ and absolute CMRO₂. This is an extension of the dcfMRI protocol which circumvents issues associated with hypercapnia and may have the potential to provide whole brain maps in a short scan time. However, more work is required to optimise the measure of M with ASE.

References: 1. Bulte et al. *NeuroImage*. 2012,60: 582; 2. Gauthier et al. *NeuroImage*. 2012,60:1212; 3. Wise et al. *NeuroImage*. 2013,83:135; 4. Davis et al. *PNAS*. 1998,95:1834; 5. Chiarelli et al. *NeuroImage*. 2007,37:808; 6. Mohtasib et al. *NeuroImage*. 2012,59:1143; 7. Kannurpatti et al. *NeuroImage*. 2008,40:1567; 8. Zappe et al. *Cerebral Cortex*. 2008,18:2666; 9. Blockley et al. *NeuroImage* 2012,60:279-289; 10. Wismer et al. *J Comput Assist Tomogr*. 1988, 12:259 11. Blockley et al. *NMRBiomed*. 2012,26:987; 12. Franconi et al. *NMRBiomed*. 2006,19:527; 13. Fujita et al. *NeuroImage*. 2003,20:2071; 14. Ibaraki et al. *JCBFM*. 2010,30:1296.