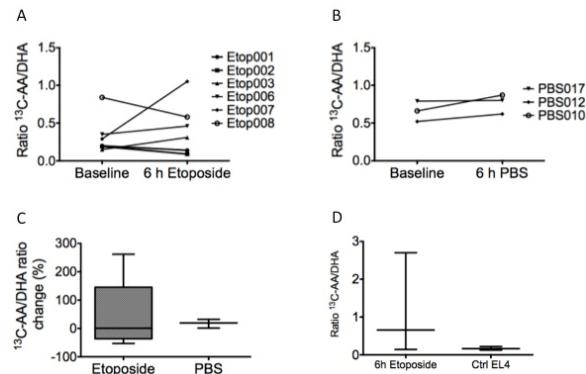


REDUCTION OF (1-¹³C)-DEHYDROASCORBIC ACID TO (1-¹³C)-ASCORBIC ACID IS NOT CORRELATED TO GLUTATHIONE IN A TREATMENT RESPONSE MODEL OF MURINE LYMPHOMA *IN VIVO*

Kerstin N Timm^{1,2}, Mikko I Kettunen^{1,2}, De E Hu^{1,2}, Tiago B Rodrigues^{1,2}, Timothy J Larkin^{1,2}, Irene Marco-Rius^{1,2}, and Kevin M Brindle^{1,2}


¹Department of Biochemistry, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom, ²Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom

Target audience

The data will concern researchers in the field of dissolution DNP and those interested in tissue redox state and cancer biology.

Purpose

Hyperpolarized [1-¹³C]-dehydroascorbic acid (DHA), the oxidized form of vitamin C, can be used both *in vitro* and *in vivo* as a magnetic resonance (MR) marker of redox status^{1,2}. What limits the rate of reduction of hyperpolarized [1-¹³C]-DHA to [1-¹³C]-AA *in vivo* and hence which metabolic process it directly reports on is still poorly understood. Glutathione is thought to play a key role in the reduction of [1-¹³C]-DHA^{1,3}, however, the extent to which other reducing equivalents such as NADPH contribute has not been reported to date. We show here that the reduction of hyperpolarized [1-¹³C]-DHA to [1-¹³C]-AA in etoposide-treated tumors is highly variable and shows no correlation with the levels of glutathione.

Figure 1 [1-¹³C]-AA/DHA ratio in EL4 tumours 6 h post etoposide treatment. Hyperpolarised [1-¹³C]-AA/DHA ratio before and 6 h post etoposide (A) or PBS (B) treatment. Average ratio change post treatment (C). Thermal carbon-13 spectra of untreated and etoposide treated EL4 tumours 150 s post injection of [1-¹³C]-DHA (D). Ctrl = control.

Discussion

Etoposide, a topoisomerase II inhibitor, has been shown previously to rapidly increase the amounts of reactive oxygen species (ROS) in EL4 murine lymphoma cells⁶. This may explain the highly variable rates of reduction of hyperpolarized [1-¹³C]-DHA to [1-¹³C]-AA in EL4 tumors *in vivo*, when the levels of cell death this early following treatment are not discernibly increased⁷. However, these rates of reduction were not correlated with glutathione levels, suggesting a contribution of other factors to the reduction of hyperpolarized [1-¹³C]-DHA, such as the rate of the pentose phosphate pathway (PPP), which produces NADPH.

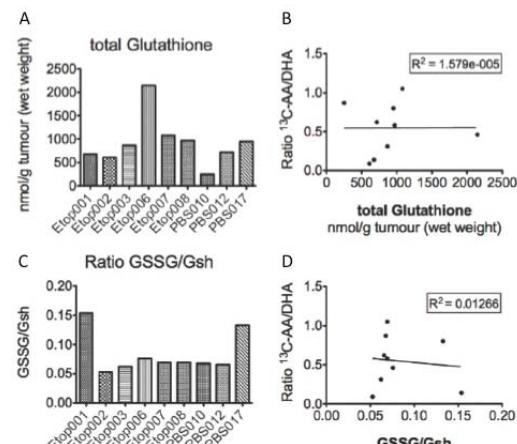
Conclusions

The reduction of hyperpolarized [1-¹³C]-DHA *in vivo* was not dependent on glutathione levels suggesting a contribution from other factors, namely the rate of NADPH production by the PPP.

References

- Bohdiek S. E., Kettunen I. M., Hu D. E. et al. Hyperpolarized [1-¹³C]-Ascorbic and Dehydroascorbic Acid: Vitamin C as a probe for imaging redox status *in vivo*. *J Am Chem Soc* 2011;133:11795-801
- Keshari K. R., Kurhanewicz J., Bok R. et al. Hyperpolarized ¹³C dehydroascorbate as an endogenous redox sensor for *in vivo* metabolic imaging. *Proc Natl Acad Sci U S A* 2011;108(46):18606-11
- Keshari K. R., Sai V., Wang Z. J. et al. Hyperpolarized [1-¹³C]Dehydroascorbate MR Spectroscopy in a Murine Model of Prostate Cancer: Comparison with 18F-FDG PET. *J Nucl Med* 2013;54(6):922-8
- Ardenkjær-Larsen J. H., Golman K., Gram A. et al. Increase of signal-to-noise of more than 10,000 times in liquid state NMR. *Discov Med* 2003;3(19):37-39
- Zhu P., Oe T. and Blair I. A. Determination of cellular redox status by stable isotope dilution liquid chromatography/mass spectrometry analysis of glutathione and glutathione disulfide. *Rapid Commun Mass Spectrom* 2008;22(4):432-40
- Boren J. and Brindle K. M. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. *Cell Death Differ* 2012;19:1561-70
- Hu D. E. and Brindle K. M. Immune cell-induced synthesis of NO and reactive oxygen species in lymphoma cells causes their death by apoptosis. *FEBS* 2005;579:2833-2841

Acknowledgements


This work was supported by CRUK and the MRC.

Methods

Hyperpolarization and dissolution of [1-¹³C]DHA: [1-¹³C]-DHA was polarized on a prototype 3.35 T polarizer magnet (Oxford instruments), as described previously^{1,4}. **In vivo MRS:** EL4 tumor-bearing mice treated for 6 h with either PBS or etoposide (67 mg kg⁻¹) were anaesthetized and a 24-mm diameter home-built surface coil tuned to ¹³C (100 MHz) was placed over the tumor. The mouse was transferred into a quadrature ¹H volume coil in a 9.4 T magnet (Varian). Two hundred μ L of dissolution fluid (28 mM DHA) was injected into the tail vein and 200 tumor slice-selective spectra were acquired with a flip angle of 10° and a TR of 1 s. **Thermal MRS:** EL4 tumor-bearing mice, either untreated or treated for 6 h with etoposide (67 mg kg⁻¹), were anaesthetized and injected with a 28 mM solution of [1-¹³C]-DHA. Mice were sacrificed after 150 s and the tumors were excised and rapidly frozen with liquid nitrogen cooled tongs. Metabolites were extracted with ice-cold perchloric acid (7% v/v) and the samples analyzed using a 500 MHz spectrometer (Bruker). **Glutathione measurements:** The reduced (GSH) and oxidized forms (GSSG) in tumor tissue were quantified by LC/MS-MS⁵.

Results

The rate of reduction of hyperpolarized [1-¹³C]-DHA to [1-¹³C]-AA was highly variable in etoposide-treated EL4 tumors (Figure 1A-C). The same result was obtained in thermal NMR measurements on tumors injected with [1-¹³C]-DHA (Figure 1D). There was no correlation between [1-¹³C]-DHA reduction rate and either total glutathione content in the tumors or the ratio of GSSG/GSH (Figure 2).

Figure 2 Glutathione levels in etoposide treated EL4 tumors. (A) Total glutathione levels or (C) GSSG/GSH ratio in etoposide or PBS-treated tumors and correlation to [1-¹³C]-AA/DHA ratio in DNP MRS experiments (B, D). Etop = etoposide.