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Introduction: Non-uniform k-space trajectories 
are needed for many applications in MRI such 
as design of receive and excitation sequences. 
Numerical approaches have been proposed to 
solve this problem [1,2]. However, these are 
computationally expensive because of the need 
to finely sample the trajectory, yielding one 
unknown to be solved per sample point. Dale et 
al. [3] used an analytical framework for simple 
trajectories, but it is not clear if this method is 
applicable to 2D or 3D (only 1D results were 
shown). A commonly used method is the 
optimal control (OC) approach proposed by 
Lustig et al. [4] that numerically computes 
optimal gradients based on an arbitrarily 
parameterized k-space trajectory k(a), a ∈ [0,1]. 
This approach performs well for trajectories 
without sharp turns but is affected by 
oscillations as well as slew rate and gradient 
violations in more challenging cases (the 
computation of the curvature is unstable for 
interpolated curves with sharp turns). In this 
work, an analytical approach for the design of 
complex 3D k-space trajectories is proposed. 
The presented method does not use 
interpolation and is therefore robust and fast. It 
exactly satisfies the gradient system 
constraints and ensures that the trajectory 
duration is minimal. 

Methods: Given a set of control points 
k(1),…,k(N) and gradient magnitude and slew 
rate constraints |G(t)| ≤ Gmax and |S(t)| ≤ Smax, a 
k-space trajectory k(t) is to be found that 
intersects the control points at ascending time 
points t(1) ≤ t(2) ≤ … ≤ t(N) and minimizes the total 
pulse duration t(N). Consecutive control points 
k(q) and k(q+1) are connected by piecewise linear 
gradients  (quadratic segments in k-space, Fig. 
1). The slope of these linear segments directly 
incorporates the slew rate constraint. Joining 
neighboring points by these basis functions 
yields slow overall trajectories because of 
consecutive decelerations and accelerations 
(Fig. 1b) even when playing gradients at 
maximum slew rate. To avoid this situation, the 
gradient strength at the common point shared 
by two consecutive segments is optimized (Fig. 
1c) so as to minimize the duration of the two 
segments. For piecewise linear gradients, the 
duration of a k-space move connecting two 
points can be written explicitly as a function of 
the 3D gradients at both points. The objective 
function to be minimized is the sum of the 
duration of the segments joining consecutive 
points, which is therefore an explicit function of the gradients at all control points. This objective is minimized using a constrained interior point algorithm 
under the constraint that the gradient strength is always below Gmax. The Jacobian of the objective is computed analytically, which greatly speeds up the 
optimization and makes it less subject to numerical errors. Note that when two control points are very close to one another, small changes in the 
gradient strength at both points can dramatically change the shape of the smooth curve joining them. This can cause the objective function (which is a 
measure of the duration of that curve, as explained above) to become discontinuous. To solve this problem, a penalty term is added to the objective that 
exactly cancels these discontinuities where they occur. 

Results/Discussion: Hundreds of 3D trajectories with different shapes were designed using the proposed method: without exception, the method 
converged to a high quality solution without oscillations and constraint violations. In contrast, the optimal control (OC) method of Lustig et al. was 
sometimes unstable and often yielded constraint violations (Fig. 2). Another advantage of the proposed approach is that it was better able to use the 
gradient system at full performance, therefore yielding shorter pulses than OC (the 3D spiral, 3D cross and random points trajectory were 16%, 1% and 
5% faster with the proposed method than with OC, respectively). Additionally, computation time was a few minutes for the OC method, depending on the 
exact trajectory, compared to a few seconds with the basis function approach. 

Figure 1: A: Basic gradient shapes used to connect consecutive k-space points. B: Solution of basis
functions such that gradients integrate to ∆k(1)/∆k(2), respectively. C: Optimization of the gradient
strength at the control point shared by the two segments to globally minimize the pulse duration
given by T(1)+T(2) 
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Figure 2: Comparison of 3D k-space trajectories designed using the optimal control (OC) method of
Lustig et al [4] (spline interpolation) and the proposed method. A and D show 3D spirals, B and E
show 3D cross shapes with several shells and C and F show points placed randomly in k-space. The
gradient constraints were Gmax=25 mT/m and Smax=150 T/m/s. The arrows show constraint violations
due to instabilities of the OC approach in the form of oscillations. In contrast, the trajectories
computed with the proposed approach satisfy the constraints exactly and are faster. 
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