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Introduction: Non-uniform k-space trajectories
are needed for many applications in MRI such
as design of receive and excitation sequences.
Numerical approaches have been proposed to
solve this problem [1,2]. However, these are
computationally expensive because of the need
to finely sample the trajectory, yielding one
unknown to be solved per sample point. Dale et
al. [3] used an analytical framework for simple
trajectories, but it is not clear if this method is
applicable to 2D or 3D (only 1D results were
shown). A commonly used method is the
optimal control (OC) approach proposed by
Lustig et al. [4] that numerically computes
optimal gradients based on an arbitrarily

parameterized k-space trajectory k(a), a € [0,1].

This approach performs well for trajectories
without sharp turns but is affected by
oscillations as well as slew rate and gradient
violations in more challenging cases (the
computation of the curvature is unstable for
interpolated curves with sharp turns). In this
work, an analytical approach for the design of
complex 3D k-space trajectories is proposed.
The presented method does not use
interpolation and is therefore robust and fast. It
exactly satisfies the gradient system
constraints and ensures that the trajectory
duration is minimal.

Methods: Given a set of control points
K. K" and gradient magnitude and slew
rate constraints |G(t)| £ Gmax and |S(t)] £ Smax, @

k-space trajectory k(t) is to be found that
intersects the control points at ascending time
points t"<t?< ... <t™ and minimizes the total
pulse duration t™. Consecutive control points
K and K*" are connected by piecewise linear
gradients (quadratic segments in k-space, Fig.
1). The slope of these linear segments directly
incorporates the slew rate constraint. Joining
neighboring points by these basis functions
yields slow overall trajectories because of
consecutive decelerations and accelerations
(Fig. 1b) even when playing gradients at
maximum slew rate. To avoid this situation, the
gradient strength at the common point shared
by two consecutive segments is optimized (Fig.
1c¢) so as to minimize the duration of the two
segments. For piecewise linear gradients, the
duration of a k-space move connecting two
points can be written explicitly as a function of
the 3D gradients at both points. The objective
function to be minimized is the sum of the
duration of the segments joining consecutive
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Figure 1: A: Basic gradient shapes used to connect consecutive k-space points. B: Solution of basis
functions such that gradients integrate to Ak™/Ak®, respectively. C: Optimization of the gradient
strength at the control point shared by the two segments to globally minimize the pulse duration
given by TOHT®

Optlmal Control

| Proposed Method ]

2?’4ms

Z 3
T|||| 1 |m». Tlrnn t |r||~'.'|

6. 65 ms 6.33 ms

i

J JV il it

I'I ||

. Tu.n-.'.- t[ms]

Figure 2: Comparison of 3D k-space trajectories designed using the optimal control (OC) method of
Lustig et al [4] (spline interpolation) and the proposed method. A and D show 3D spirals, B and E
show 3D cross shapes with several shells and C and F show points placed randomly in k-space. The
gradient constraints were Gmax=25 mT/m and Sma=150 T/m/s. The arrows show constraint violations
due to instabilities of the OC approach in the form of oscillations. In contrast, the trajectories
computed with the proposed approach satisfy the constraints exactly and are faster.

points, which is therefore an explicit function of the gradients at all control points. This objective is minimized using a constrained interior point algorithm
under the constraint that the gradient strength is always below Gmax. The Jacobian of the objective is computed analytically, which greatly speeds up the
optimization and makes it less subject to numerical errors. Note that when two control points are very close to one another, small changes in the
gradient strength at both points can dramatically change the shape of the smooth curve joining them. This can cause the objective function (which is a
measure of the duration of that curve, as explained above) to become discontinuous. To solve this problem, a penalty term is added to the objective that
exactly cancels these discontinuities where they occur.

Results/Discussion: Hundreds of 3D trajectories with different shapes were designed using the proposed method: without exception, the method
converged to a high quality solution without oscillations and constraint violations. In contrast, the optimal control (OC) method of Lustig et al. was
sometimes unstable and often yielded constraint violations (Fig. 2). Another advantage of the proposed approach is that it was better able to use the

gradient system at full performance, therefore yielding shorter pulses than OC (the 3D spiral, 3D cross and random points trajectory were 16%,

1% and

5% faster with the proposed method than with OC, respectively). Additionally, computation time was a few minutes for the OC method, depending on the
exact trajectory, compared to a few seconds with the basis function approach.
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