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Variations in DCE-MRI Assessment of Breast Cancer Therapy Response: A Multicenter Data Analysis Challenge 
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Introduction: As a noninvasive imaging method for tissue microvasculature characterization, dynamic contrast-enhanced MRI (DCE-MRI) is increasingly being used 
in research settings and early phase clinical trials to assess tumor therapeutic response (1,2).  Pharmacokinetic (PK) analysis of DCE-MRI data allows quantification of 
tissue biological properties in vivo, such as Ktrans and ve.  However, the accuracy and precision of these parameters can be affected by a plethora of factors, including 
errors in determinations of pre-contrast T1 (T10) (3) and arterial input function (AIF) (2), as well as model selection for data fitting (4).  A recent study (5) comparing 
four commercial software packages showed considerable variability in PK parameter quantifications even though all four tools are presumably based on the same Tofts 
model (6).  Despite significant efforts in generating guidelines (7,8) for quantitative DCE-MRI studies, thorough comparison and validation of data analysis algorithms 
are needed before quantitative DCE-MRI is ready to be integrated into clinical practice.  In this multicenter study, we sought to evaluate variations in DCE-MRI 
assessment of breast cancer response to therapy as a result of differences in PK models and software tools used. 
Methods: A total of 7 institutions from the National Cancer Institute-sponsored Quantitative Imaging Network (QIN) participated in this DCE-MRI data analysis 
challenge, in which each center processed the shared DCE-MRI data with site-specific employment of PK models and software tools.  The shared Breast DCE-MRI 
data were collected at one center from women with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NACT), at multiple time points before, 
during, and after NACT.  Axial bilateral DCE-MRI images were acquired with a 3D GRE-based TWIST sequence (9) using a 3T Siemens scanner.  32-34 image frames 
of 120-128 image slices each were acquired for ~ 10 min with 18-20 s temporal resolution. 

The visit 1 (V1, before NACT) and V2 (after one NACT cycle) DCE-MRI data 
from 10 patients (for a total of 20 data sets) were shared anonymously for multicenter data 
analysis.  In all, a total of 12 algorithms/software packages were used, including six based on 
the Tofts model (TM), four on the extended TM (ETM) (10), and two on the Shutter-Speed 
model (SSM) (11).  These tools were built in-house, obtained as free open source, purchased 
commercially, or developed as prototype research software by a major manufacturer.  To 
minimize variations in derived PK parameters caused by factors other than differences in 
models and algorithms, tumor ROI drawings (on multiple slices), a population-averaged AIF (9), and the measured mean tumor ROI T10 value were provided for data 
analysis by the center where the data were acquired.  Mean tumor Ktrans, ve, kep (= Ktrans/ve), vp (ETM only), and τi (mean intracellular water lifetime, SSM only) values 
for each patient at each visit, as well as their % changes (V2 relative to V1), were reported by each center.  To assess reproducibility of each DCE-MRI parameter 
across all 12 algorithms and within each PK model, linear mixed models were fitted to obtain estimates of intra-class correlation coefficient (ICC) and within-subject 
coefficient of variation (wCV), and the corresponding 95% confidence intervals (CIs).  Correlating with pathologic complete response (pCR) and non-pCR status, 
univariate logistic regression (ULR) models were fitted to evaluate capabilities of these parameters for early prediction of therapy response. 
Results:  The column graph in Fig. 1 shows the mean wCV values of the five DCE-MRI parameters across all 12 algorithms at V1 and V2, with Ktrans wCV as high as 
0.59 and vp having the highest wCV of 0.82.  wCV values were all reduced when only the algorithms within the same PK model were compared. The Ktrans wCV was as 
low as 0.21 for the two SSM algorithms, similar to that of τi (Fig. 1) which is a SSM-only parameter.  The Table lists Ktrans ICC values and 95% CIs across all 
algorithms, and within TM, ETM, and SSM, respectively.  ICC represents the proportion of total variation contributed by between-subject difference, with high ICC 
indicating good agreement among different measurement approaches.  The Ktrans ICC was generally increased from comparing all algorithms to comparing algorithms 
within one model.  It is also important to note that Ktrans % change generally had better agreement among the algorithms than absolute Ktrans value at either V1 or V2.  
Similar ICC patterns were observed for the other DCE-MRI parameters. 

Pathological analyses of post-NACT resection and pre-NACT biopsy specimens revealed 3 pCRs and 7 non-pCRs among the 10 patients.  Fig. 2  shows 
scatter plots of V1 (2a) and V2 (2b) Ktrans of the pCRs (black) and non-pCRs (red) and the corresponding % changes (2c), with each column representing results 
returned from one algorithm.  The columns associated with the same PK model were grouped next to each other in Figs. 2a-2c (labeled in Fig. 2b).  For any of the 12 
algorithms, V1 Ktrans was not a good early predictor of response.  However, almost all algorithms achieved good to excellent early discrimination of pCR and non-pCR 
using Ktrans and kep (results not shown here) parameters at V2 and their % changes, with majority of them having ULR c statistics values equal to 1 (indicating complete 
separation of pCR and non-pCR) or greater than 0.9. 
Discussion and Conclusion:  This multicenter DCE-MRI data analysis challenge focuses on evaluation of variations in DCE-MRI prediction of breast cancer therapy 
response caused by differences in PK models and associated software algorithms.  Despite the fixed inputs of tumor ROI definition, AIF, and T10 for analysis of the 
shared data sets with each algorithm, there are considerable variations in returned DCE-MRI 
parameters.  This can be partly explained by the involvement of two SSM algorithms, which 
returned significantly (P < 0.05, analysis not shown here) greater Ktrans (Figs. 2a and 2b) and ve 
values than either TM or ETM.  Parameter agreement is generally improved when comparing 
algorithms within the same model (Table).  The relatively low temporal resolution of the raw data 
likely led to low precision and high variance in ETM estimation of the vp parameter (4).  Other 
contributions to parameter variations may come from differences in fixed physiological parameters, 
scaling factors, and goodness of fitting criteria that are employed in each algorithm.  These factors 
were not controlled in this data analysis challenge.  It is very encouraging within the context of 
therapy response assessment, however, that V2 Ktrans (or kep) and its % change obtained from all 12 
algorithms provided good to excellent early prediction of response.  The predictive ability of the V2 
parameters may be simply because the substantial decreases in pCR tumor perfusion and 
permeability outweighed parameter variations in this particular study setting, while that of the 
parameter % change is probably due to cancellation of the inter-algorithm systematic errors (or 
variations) in % change calculation, suggesting that parameter % change should be the imaging 
metric of choice in multicenter DCE-MRI trials employing different data analysis software tools. 
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