Variations in DCE-MRI Assessment of Breast Cancer Therapy Response: A Multicenter Data Analysis Challenge
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Introduction: As a noninvasive imaging method for tissue microvasculature characterization, dynamic contrast-enhanced MRI (DCE-MRYI) is increasingly being used
in research settings and early phase clinical trials to assess tumor therapeutic response (1,2). Pharmacokinetic (PK) analysis of DCE-MRI data allows quantification of
tissue biological properties in vivo, such as K™ and v.. However, the accuracy and precision of these parameters can be affected by a plethora of factors, including
errors in determinations of pre-contrast T; (Tjo) (3) and arterial input function (AIF) (2), as well as model selection for data fitting (4). A recent study (5) comparing
four commercial software packages showed considerable variability in PK parameter quantifications even though all four tools are presumably based on the same Tofts
model (6). Despite significant efforts in generating guidelines (7,8) for quantitative DCE-MRI studies, thorough comparison and validation of data analysis algorithms
are needed before quantitative DCE-MRI is ready to be integrated into clinical practice. In this multicenter study, we sought to evaluate variations in DCE-MRI
assessment of breast cancer response to therapy as a result of differences in PK models and software tools used.

Methods: A total of 7 institutions from the National Cancer Institute-sponsored Quantitative Imaging Network (QIN) participated in this DCE-MRI data analysis
challenge, in which each center processed the shared DCE-MRI data with site-specific employment of PK models and software tools. The shared Breast DCE-MRI
data were collected at one center from women with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NACT), at multiple time points before,
during, and after NACT. Axial bilateral DCE-MRI images were acquired with a 3D GRE-based TWIST sequence (9) using a 3T Siemens scanner. 32-34 image frames

of 120-128 image slices each were acquired for ~ 10 min with 18-20 s temporal resolution. Table. K™ Intra-Class Correlation Coefficient (ICC)

The visit 1 (V1, before NACT) and V2 (after one NACT cycle) DCE-MRI data Algorithm
from 10 patients (for a total of 20 data sets) were shared anonymously for multicenter data Comparison V1 V2 % Change (V21)
analysis. In all, a total of 12 algorithms/software packages were used, including six based on All algorithms (n = 12) | 0.27(0.11,0.53) | 0.18 (0.06, 0.44) | 0.69 (0.46, 0.85)
the Tofts model (TM), four on the extended TM (ETM) (10), and two on the Shutter-Speed T™ (n = 6) 0.44(0.20, 0.71) | 0.17 (0.04, 0.54) | 0.91 (0.79, 0.96)
model (SSM) (11). These tools were built in-house, obtained as free open source, purchased ETM (n=4) 0.62 (0.34,0.84) | 0.36(0.11,0.71) | 0.63 (0.34, 0.84)
commercially, or developed as prototype research software by a major manufacturer. To SSM (n=2) 0.84(0.58, 0.95) | 0.72 (0.36,0.92) | 0.89 (0.69, 0.97)

minimize variations in derived PK parameters caused by factors other than differences in

models and algorithms, tumor ROI drawings (on multiple slices), a population-averaged AIF (9), and the measured mean tumor ROI T, value were provided for data
analysis by the center where the data were acquired. Mean tumor K™, v, ke, (= K™"/v), v, (ETM only), and 7; (mean intracellular water lifetime, SSM only) values
for each patient at each visit, as well as their % changes (V2 relative to V1), were reported by each center. To assess reproducibility of each DCE-MRI parameter
across all 12 algorithms and within each PK model, linear mixed models were fitted to obtain estimates of intra-class correlation coefficient (ICC) and within-subject
coefficient of variation (WCV), and the corresponding 95% confidence intervals (CIs). Correlating with pathologic complete response (pCR) and non-pCR status,
univariate logistic regression (ULR) models were fitted to evaluate capabilities of these parameters for early prediction of therapy response.

Results: The column graph in Fig. 1 shows the mean wCV values of the five DCE-MRI parameters across all 12 algorithms at V1 and V2, with K™ wCV as high as
0.59 and v, having the highest wCV of 0.82. wCV values were all reduced when only the algorithms within the same PK model were compared. The K™ wCV was as
low as 0.21 for the two SSM algorithms, similar to that of 7; (Fig. 1) which is a SSM-only parameter. The Table lists K™ ICC values and 95% ClIs across all
algorithms, and within TM, ETM, and SSM, respectively. ICC represents the proportion of total variation contributed by between-subject difference, with high ICC
indicating good agreement among different measurement approaches. The K™ ICC was generally increased from comparing all algorithms to comparing algorithms
within one model. It is also important to note that K™ % change generally had better agreement among the algorithms than absolute K™ value at either V1 or V2.
Similar ICC patterns were observed for the other DCE-MRI parameters.

Pathological analyses of post-NACT resection and pre-NACT biopsy specimens revealed 3 pCRs and 7 non-pCRs among the 10 patients. Fig. 2 shows
scatter plots of V1 (2a) and V2 (2b) K™ of the pCRs (black) and non-pCRs (red) and the corresponding % changes (2c), with each column representing results
returned from one algorithm. The columns associated with the same PK model were grouped next to each other in Figs. 2a-2c (labeled in Fig. 2b). For any of the 12
algorithms, V1 K™ was not a good early predictor of response. However, almost all algorithms achieved good to excellent early discrimination of pCR and non-pCR
using K™ and ke, (results not shown here) parameters at V2 and their % changes, with majority of them having ULR c statistics values equal to 1 (indicating complete
separation of pCR and non-pCR) or greater than 0.9.

Discussion and Conclusion: This multicenter DCE-MRI data analysis challenge focuses on evaluation of variations in DCE-MRI prediction of breast cancer therapy

response caused by differences in PK models and associated software algorithms. Despite the fixed inputs of tumor ROI definition, AIF, and T}, for analysis of the

shared data sets with each algorithm, there are considerable variations in returned DCE-MRI e ) )

parameters. This can be partly explained by the involvement of two SSM algorithms, which ‘Fiﬂ_'l % [Fig.2a] [epcr

returned significantly (P < 0.05, analysis not shown here) greater K™ (Figs. 2a and 2b) and v. o - flon:ECR

values than either TM or ETM. Parameter agreement is generally improved when comparing . 2 *
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contributions to parameter variations may come from differences in fixed physiological parameters, S
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scaling factors, and goodness of fitting criteria that are employed in each algorithm. These factors
were not controlled in this data analysis challenge. It is very encouraging within the context of  0.12
therapy response assessment, however, that V2 K™ (or k) and its % change obtained from all 12
algorithms provided good to excellent early prediction of response. The predictive ability of the V2
parameters may be simply because the substantial decreases in pCR tumor perfusion and 0%
permeability outweighed parameter variations in this particular study setting, while that of the 0
parameter % change is probably due to cancellation of the inter-algorithm systematic errors (or Y
variations) in % change calculation, suggesting that parameter % change should be the imaging

metric of choice in multicenter DCE-MRI trials employing different data analysis software tools.
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