

COMPARISON OF NON-RIGID MOTION COMPENSATED RECONSTRUCTIONS FOR 3D ABDOMINAL MRI

Gastao Cruz¹, David Atkinson², Christoph Kolbitsch¹, Tobias Schaeffter¹, and Claudia Prieto¹

¹Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom, ²Centre for Medical Imaging, University College London, London, United Kingdom

INTRODUCTION: Respiratory motion is a major challenge for 3D abdominal MRI. Respiratory navigator gating is commonly used to compensate for motion, but leads to low scan efficiency. Recently, a free-breathing motion compensated technique was proposed that estimates 3D non-rigid motion from undersampled reconstructed images. This technique compensates motion by warping the undersampled images to a common respiratory position¹⁻² (image warping). An alternative approach is to use the estimated motion fields to correct the corrupted k-space directly in the reconstruction process, using a general matrix description (GMD) of the acquisition³. Here we propose to use the GMD approach to compensate for motion in 3D abdominal MRI and compare its performance with the image warping framework. Results on 5 volunteers show that the GMD approach yields sharper images and correctly reconstructs small structures in comparison with the image warping approach and gated reconstruction.

METHODS: (Fig.1) 1. Image Acquisition

Data is acquired using a self-gated G-RPE trajectory⁴: a combination of Cartesian readout (k_x) with radial phase encoding (k_y , k_z), with an angular step of 111.25° between consecutive profiles. This guarantees quasi-uniform profile distribution for arbitrary number of angular profiles.

2. Data Binning: The central spoke of each profile is used to derive a respiratory signal, which allows combining data at similar respiratory positions into bins. **3. Undersampled Reconstruction:**

Each bin is reconstructed using non-Cartesian iterative SENSE⁵, resulting in a set of undersampled images (I_b) at different respiratory positions. **4. Motion Estimation:** Non-rigid registration (LREG)⁶ is used on the set I_b to obtain a respiratory motion model. **5A. Image Warping:**

The motion model is used to warp each I_b to a common respiratory position, where they are averaged². **5B. Image Reconstruction:**

The estimated motion is incorporated into the reconstruction process by solving the equation $(g^H g)s_0 = g^H s$ where s_0 is the ideal image, s the motion corrupted image and g the encoding matrix that incorporates the motion model. The equation above was solved with the conjugate gradient method.

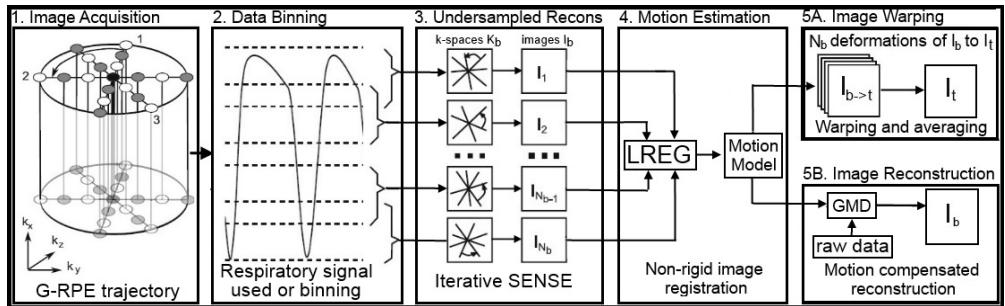


Fig.1: Motion compensation framework: 1) acquisition with G-RPE, 2) binning data into similar respiratory phases, 3) reconstructions of binned data, 4) non-rigid motion estimation, 5A) motion model used to warp all I_b to the same phase, 5B) motion correction directly in the reconstruction from raw data.

EXPERIMENTS: Five healthy volunteers were scanned under free-breathing on a 1.5T Philips scanner using a 32 channel coil (b-SSFP, FOV = 287mm isotropic, resolution = 1.75mm isotropic, $TR/TE = 3.0/1.4$ ms, flip angle = 30° , radial undersampling = 2). Three reconstructions were performed from the same acquired data: GMD approach, image warping and 5mm gated reconstruction. The same number of profiles was used for each of the three reconstructions to allow comparison. 5 bins (2.92 ± 1.00 mm) and 723 ± 91 profiles were employed to allow adequate motion estimation. Methods were compared using measures of vessel sharpness (VS) and liver sharpness (LS)¹, apparent SNR and scoring of image blurring from 0 (extreme blurring) to 4 (no blurring) by 6 experts.

RESULTS: Reconstructions results for the proposed, image warping and gated approaches are shown in Fig.2. The respective measures obtained were: VS = 0.77 ± 0.13 , 0.69 ± 0.08 and 0.72 ± 0.09 ; LS = 1.27 ± 0.32 , 1.09 ± 0.26 and 1.10 ± 0.29 ; apparent SNR = 8.51 ± 3.99 , 14.41 ± 5.86 and 10.11 ± 4.02 ; qualitative evaluation = 3.10 ± 0.89 , 2.28 ± 0.64 and 2.73 ± 0.93 . The GMD and image warping approach had a scan efficiency of $88 \pm 11\%$; the gated reconstruction had $63 \pm 13\%$.

CONCLUSION: We have shown that the proposed GMD approach yields sharper images and correctly reconstructs small structures in comparison to the image warping and gated reconstructions, whereas image warping lead to higher apparent SNR. GMD shows an increase of $\sim 12\%$ in VS, $\sim 17\%$ in LS and $\sim 36\%$ in qualitative evaluation relative to the image warping approach. Both GMD and image warping approaches improve scan efficiency by $\sim 25\%$. Future work will optimize the binning and motion estimation processes to further improve accuracy and scan efficiency of the motion compensated reconstructions.

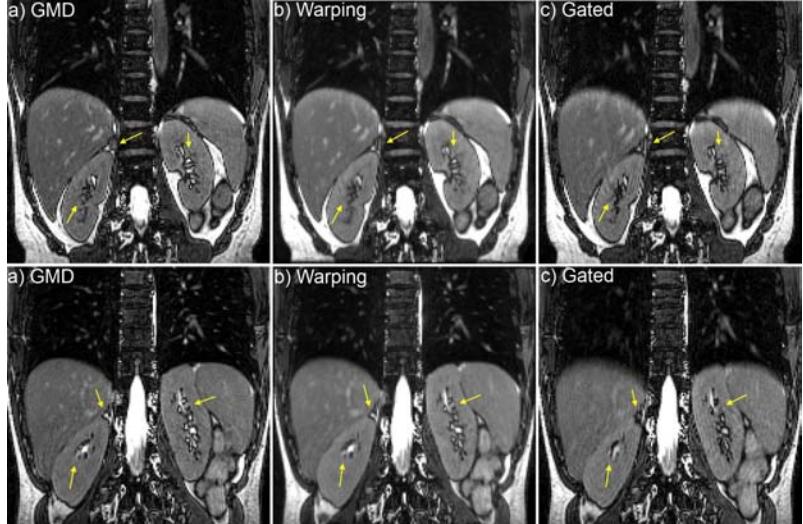


Fig.2: Coronal slices of 3D isotropic motion compensated reconstructions for two volunteers: a) Proposed GMD; b) image warping; c) 5mm gated reconstruction. [5] Pruessman et al, MRM 2001; [6] Buerger et al, Media 2011.

REFERENCES: [1] Buerger et al, IEEE 2012; [2] Buerger et al, MagMa 2013; [3] Batchelor et al, MRM 2005; [4] Prieto et al, MRM 2010;