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Target audience: Basic scientists investigating metabolomic biomarkers for cancer prognosis and treatment or breast cancer subtypes  

Purpose: The heterogeneous biology of various breast tumors has led to the need for detection of clinically relevant subgroups. In the past decades, the use of different 
high-throughput genome-wide profiling techniques has identified several novel molecular genetic events, and subsequently their biological and clinical impact has been 
validated1,2. Here we show the resulting metabolic subgroups using hierarchical clustering of the MR metabolic profiles from tumor biopsies from breast cancer 
patients. These were combined with data from gene expression and reverse phased protein arrays (RPPA) from the same patients to search for any relationship between 
metabolic profiles and molecular subtypes and relate these to clinical information. This novel approach bridging MR metabolic subgroups to gene expression and 
protein profiles may improve our knowledge about various classes of breast cancer that may contribute to personalized treatment.  

Methods: The metabolic profiles of a large cohort of primary tumors from breast cancer patients (N=280 tissue samples) were determined using ex vivo HR MAS 
MRS. Principal component analysis (PCA) was used to extract the metabolically important variance structure before hierarchical cluster analysis using Ward’s method. 
RPPA and unsupervised hierarchical cluster analysis was used to carry out a protein-based subtype classification of the tumor samples. In addition, the samples were 
classified into expression subtypes based on prediction analysis of microarray using a 50-gene classifier, the PAM50 method3. The distribution of metabolic cluster 
classes within the expression and the RPPA subtypes was evaluated to establish metabolic characteristics that could be associated to each breast cancer subtype.  

Results: Four clusters based on metabolic differences were evaluated and correlated with expression and RPPA breast cancer subtypes. Comparison of the mean spectra 
for each of these clusters (Figure 1) revealed the main differences to be the levels of glucose, ascorbate, alanine, creatine, lactate, taurine, choline, PCho, GPC, glycine 
and lipids (Table 1). Metabolic cluster 3 was composed of around half of the samples. From the total cohort, 245 and 221 samples were classified into breast cancer 
subtypes using the RPPA and PAM50, methods, respectively. The distribution of metabolic cluster classes within RPPA subtypes (Figure 2) revealed that 74% of 
Reactive I samples were grouped into cluster 3. As for expression subtypes, only in Luminal B were the majority of samples not grouped into this cluster (Figure 2).  

 

 

 

 

 

 

 

 

Discussion: Here we report four metabolic subgroups of breast carcinomas based on a large cohort of 
samples. These subgroups show differences in metabolites that previously have been found important in 
breast cancer. It has been shown that breast tumors have altered concentration of the metabolites such as 
choline, phosphocholine (PCho), glycerophosphocholine (GPC), lactate and glycine when compared to 
normal tissue4. When associating metabolic characteristics with expression subtypes, GPC/PCho ratio has 
been found to be higher in basal like versus luminal like breast cancers5. In this study, the most prominent 
congruence between breast cancer subtypes and metabolic subgroups was the enrichment of Reactive I 
samples in cluster 3, which was characterized by having higher glucose content (Table 1).  However, this 
metabolic characteristic was found in a significant number of samples with different subtype; thus, there 
does not seem to be an association between metabolic profiles and breast cancer subtypes. This might 
make it possible for molecular subtypes to be further divided into subclasses based on metabolic 
differences. Metabolic data has previously been combined with transcriptomics data from the same samples to subclassify the Luminal A subtype into three groups6. 
The metabolic subgroups obtained in this study will now be further characterized by investigating the gene expression patterns from the same tumors. Furthermore, 
clinical data is available for the whole cohort, and this will be used to detect frequencies of traditional prognostic and predictive factors within the clusters. 
 
Conclusion: Bridging information from several molecular levels in the same tumor, i.e. the expression and metabolic profiles, and the clinical metadata from the same 
patient may improve the understanding of breast cancer heterogeneity, and may lead to more patient specific treatment. In addition, this study may prove MR 
metabolomics to be a potential additional diagnostic tool for clinical use. 
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Metabolic Characterization of Cancer, Curr Top Med Chem, 2011; 11(1):2-26. 5] Moestue, S., et al. Distinct choline metabolic profiles are associated with differences 
in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer, 2010; 10:433. 6] Borgan, E., et al. Merging transcriptomics and 
metabolomics – advances in breast cancer profiling. BMC Cancer, 2010; 10:628. 

Table 1: Main differences in metabolite levels between 
mean spectra from the four clusters. Arrow pointing up 
represents cluster where the metabolite level is higher 
when compared to the mean quantity from all samples. 
Arrow pointing down indicates lower level.  

(A)

(B)
Figure 1: Comparison of mean spectra for the 
four metabolic clusters. Five regions have been 
omitted as shown due to high lipid signals. 

Figure 2: Relation between metabolic cluster 
classes and breast cancer subtypes classified (A) 
based on RPPA subtyping and (B) using the PAM50 
centroid-based prediction method. 
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