

Measurement of T_2 and T_2^* in Spin Echo Single Point EPR Imaging Using a Single Acquisition Method

Hyungseok Jang¹, Sankaran Subramanian², Nallathamby Devasahayam², Shingo Matsumoto², Keita Saito², Murali C. Krishna², and Alan B. McMillan¹
¹Radiology, University of Wisconsin, Madison, WI, United States, ²Radiation Biology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, United States

Target Audience Researchers interested in quantitative oxygen imaging using electron paramagnetic resonance imaging.

Purpose Electron paramagnetic resonance imaging (EPRI) has surfaced as a promising technique that can allow quantitative imaging of tissue oxygenation. Owing to the extremely short spin-spin relaxation time of the spin probe (Oxo63), current EPRI benefits from single point imaging (SPI) scheme where entire FID is phase encoded under static phase encoding gradients¹. Several methods have been proposed to overcome zoom-in effect (time-decreasing FOV) resulting from using static phase encoding gradients and thereby enable direct T_2^*/pO_2 estimation, such as the multiple acquisition method², a single acquisition method³, and a spin echo-based method⁴. Among the techniques, spin echo based SPI-EPRI (ESPI-EPRI) is worthy of study because it can allow simultaneous T_2 and T_2^* estimation when combined with a single acquisition method. In EPRI, T_2/T_2^* parameters are used as a precursor to pO_2 quantification owing to their inversely proportional relation. In this study, the physical and physiological significance of T_2 and T_2^* measures was explored through ESPI-EPRI.

Methods To obtain images with an equal FOV in ESPI, we extended a single acquisition method using gridding and k-space extrapolation (KSE)³. Since there are three independent segments in ESPI as seen in Fig. 1-a, KSE can be applied in two different ways, intra-segment or inter-segment extrapolation. In intra-segment KSE, k-spaces are extrapolated independently within each segment as shown in Fig. 1-b, whereas inter-segment KSE benefits from k-spaces in different segments as shown in Fig. 1-c. Once equal FOV images have been secured, T_2 and T_2^* can be fit over a large amount of data points (typically 100-300 points) using the following piecewise signal equation:

$$\begin{aligned} M &= M_0 \exp\left(-\frac{t}{T_2} - \frac{t}{T_2'}\right) & \text{for } t < \text{TE}/2 \\ M &= M_0 \exp\left(-\frac{t}{T_2} - \frac{t - \text{TE}}{T_2'}\right) & \text{for } \text{TE}/2 \leq t < \text{TE} \\ M &= M_0 \exp\left(-\frac{t - \text{TE}}{T_2} - \frac{t}{T_2'}\right) & \text{for } t > \text{TE} \end{aligned}$$

, where TE denotes echo time. T_2 and T_2' can be directly fit if TE is known, and T_2^* can be calculated by the equation, $T_2^* = 1/(1/T_2 + 1/T_2')$. We compared quantitative measurements of single acquisition ESPI and single acquisition FID-SPI on a 10 mT EPR scanner¹.

Results Inter-segment KSE (Fig. 1d-bottom) yields better imaging quality than intra-segment (Fig. 1d-top) because error propagated during extrapolation is alleviated by taking data from the first segment that has higher SNR. Fig. 2a shows the T_2^* map estimated by applying single acquisition FID-SPI, and Fig. 2b and Fig. 2c show the T_2^* map and T_2 map estimated using the proposed method with ESPI data, respectively. Table 1 shows estimated T_2/T_2^* in each tube and the resultant $\%O_2 \cdot R_2(^*)$ curve fits.

Discussion and Conclusion A new approach for single acquisition quantitative ESPI has been presented. As shown in Table 1, similar estimates of T_2^* were obtained between FID and ESPI approaches. While the observed T_2 is significantly larger (as expected), the slope of T_2 and T_2^* with varying oxygenation is very similar, indicating similar sensitivity to oxygenation with either parameter. Future work is needed to evaluate the physiological significance between T_2 and T_2^* measurements for *in vivo* tumor hypoxia imaging. Further, tradeoffs between the value of SPI, which offers a shorter TR and thus more rapid imaging, versus ESPI which allows estimation of both parameters and a higher intrinsic SNR should be examined.

References

1. Subramanian et al. (2002). MRM. 48: 370–379.
2. Matsumoto et al. (2006). MRM. 55: 1157-1163.
3. Jang et al. (2013). MRM. 00: 1–9.
4. Subramanian et al. (2012). JMR. 218: 105-114

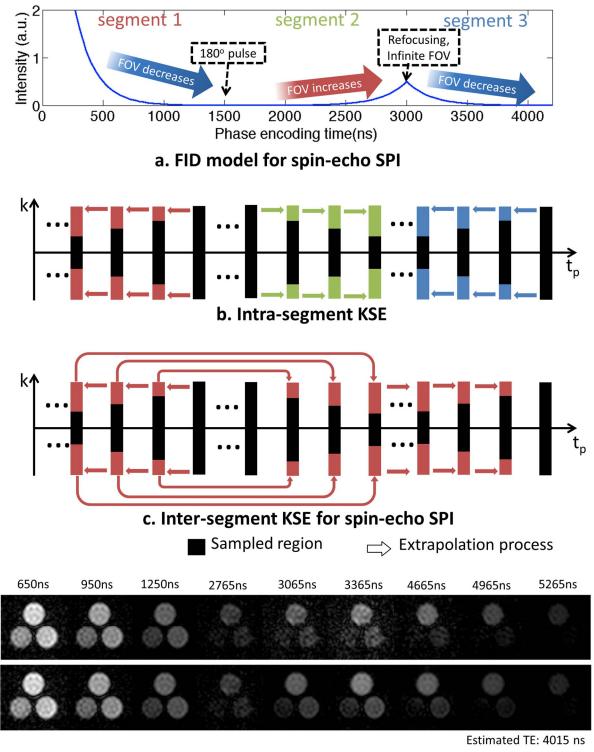


Figure 1. k-space extrapolation in ESPI.

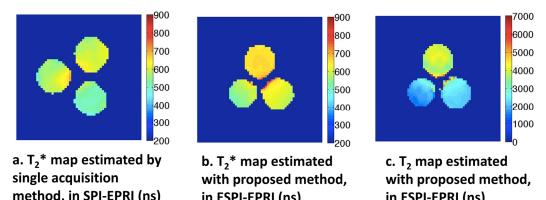


Figure 2. Estimated T_2^* maps. 19x19x19 SPI data was used for a, and 21x21x21 ESPI data was used for b. 2D slices are shown.

	T ₂ /T ₂ [*] (ns)			%O ₂ ·R ₂ ([*]) curve fit		
	Tube 1 (0%)	Tube 2 (2%)	Tube 3 (5%)	Slope (1/ns%O ₂)	Y-intercept (1/ns)	R ²
SPI (T ₂ [*])	625.7 ± 69.2	600.4 ± 48.9	534.9 ± 41.4	5.15 x 10 ⁻⁵	1.61 x 10 ⁻³	0.99
ESPI (T ₂ [*])	673.9 ± 57.7	620.7 ± 22.8	572.8 ± 41.0	5.28 x 10 ⁻⁵	1.49 x 10 ⁻³	0.99
ESPI (T ₂)	4219.4 ± 334.2	2329.1 ± 184.6	1939.5 ± 258.6	5.14 x 10 ⁻⁵	2.87 x 10 ⁻⁴	0.96

Table 1. Estimated parameters. A 3-tube phantom of Oxo 63 bubbled with 0%, 2%, 5% oxygen was used.