Combining HARDI Datasets With More Than One b—Value Improves Diffusion MRI-Based Cortical Parcellation
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Target Audience: These methods are of interest for neuroscientists and neuroimaging experts interested in in—vivo, MRI-based parcellation of the cortex.
Purpose: In-vivo parcellation of the human cerebral cortex has received much interest"**. Previous investigators used or T1/T2-weighted images* or maps of
T1 relaxation times to estimate the extent of cortical myelination®. Others explored the utility high angular resolution diffusion—weighted imaging (HARDI)®”, fit
the data to specific models and reported layer—specific heterogeneity in the cortex, which may be used Figure 1 --- K-means Clustering Results . to
identify cortical areas. Others have used the HARDI data in a model-free fashion by spherical harmonic
decomposition to characterise the underlying tissue’. In a similar fashion, we used a vector of 27 orientationally
invariant HARDI features as a tissue fingerprint®. In the present study we investigate whether the discriminative
power of such a fingerprint could be increased. Rather than using a 1D vector we propose to construct a 2D
fingerprint matrix, where the 2" dimension encodes b—value. Given that varying b-values probe different
aspects of tissue microstructure, the expectation is that data from differing b—values will parcellate differently.
The aim of this study is to investigate whether combining data from different b—values improves the
parcellation.
Methods: An adult human male was scanned, with written informed consent in accordance with local ethics
guidelines on a 3T Trio scanner (Siemens, Erlangen, Germany), using body transmit and a 32—channel receive—
only head coil. Four HARDI datasets had 2.3 mm isotropic resolution, 61 diffusion directions and b-values of
750, 1500, 2500 & 3500 s/mm?>. Minimum echo time, 84, 98, 109 & 118 ms was used for each with ~32 mT/m
gradient amplitude for diffusion encoding. The MDEFT structural image had 1 mm isotropic resolution and
inversion/echo/repetition times of 910/2.5/7.9 ms respectively. The grey/white matter (GM/WM) and pial/GM
boundaries were estimated from MDEFT image using FreeSurfer. The b0 image of each HARDI data set was
aligned with the MDEFT image. The gradual, apparent shift in the phase—encoding direction was corrected in
the diffusion—weighted images (DWIs). After the alignment of the HARDI and MDEFT images, the signal
intensity of the HARDI datasets was sampled at each vertex point on GM/WM boundary surface, along the
local surface normal, half way between the GM/WM boundary & the pial/lGM boundary. This resulted in a
4x62 matrix of signal intensities. Spherical harmonic coefficients up to order 6 were estimated from each of the
4 data sets providing the 27—vector of orientationally invariant features®. This procedure provided 4x27 feature
matrix at each WM surface vertex. Standard k—-means clustering was employed to parcellate the cortical surface
into 40 clusters, either separately for the 1x27 feature vector of each b—value or for the 4x27 feature matrix of
all b—values together. For Fig.1 the colors are arbitrary but clusters with similar feature vectors are painted in
similar colors within a given b—value. There is an inherent inverse relationship between the signal-to—noise
ratio (SNR) and b—value. To estimate the voxel-wise signal, the mean intensity was calculated across time (i.e.
along the DWIs). The standard deviation (STD) of voxel intensities was calculated from a region at the edge of
the corresponding b0 image outside of the brain. The ratio of the mean and STD was taken as the SNR for each
HARDI data set.
Results: ﬂg_l shows the results of k- Figure 2 --- Correlation Coefficients
mean clustering. From top to bottom the pgss B .
first 4 rows are based on b = 700, 1500, ¢
2500 & 3500 s/mm’ respectively. The |
image on the bottom is the k—mean &
clustering result when considering the
4x27 features simultaneously. The color
scale in these images is identical but the
k-means cluster group numbering is BE&
arbitrary. Note that the four b-values
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different aspects of the microstructure. 700 vs 1500 s/m mzéieo vs 2500 s/ mm?2200 ys 3500 s/mm?
Using a 4x27 feature matrix rather Colors encode the correlation coefficient between blue (-1) and red
resulted in a smoother, more continuous (+1). White arrows point to the same area.
parcellation of cortical areas than was possible with any single 1x27 feature vector. See, for example, areas 3
and 4 (posterior and anterior banks of the central sulcus), an inferior frontal area (Broca's area — red arrow), and
primary and secondary auditory areas on the superior temporal gyrus and posterior planum temporale. In Fig.2
the correlation coefficients of the 1x27 vectors are indicated between the 1% and the other 3 HARDI data sets.
Clearly the correlation is high between data from similar b-values (700 vs 1500 s/mm?) but as the difference in
b—values grows the correlation diminishes, indicating additional information harvested by collecting the extra
data. Spatial heterogeneity in this respect is also evident in that other areas show high correlation for all 3 pairs
of data. The SNR of the HARDI dataset with b = 700 s/mm’ was about 4 times that of the one with b = 3500
s/mm? but the latter was still above the noise floor.
Discussion: These results strongly suggest that data from more than a single b—value shell contain information that improves the discriminative power of the k—
mean clustering used to parcellate cortical gray matter. Dissimilar parcellation among different b—values may result from a) probing different aspect of the
underlying microstructure, b) the different SNR or c) scan—rescan variability. We previously showed that the scan-rescan reproducibility is excellent® and here
we found the SNR adequate for all 4 datasets. Future work will validate the histological specificity of this parcellating pipeline and optimise b—value selection.
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