
Figure 1: The MR-based segmentations 
(green) for bone (top row) and air 
(bottom row) are shown with CTseg 
(blue) and “regions of overlap for the 
DUseg method (panel A) and R2seg 
method (panel B). 

Figure 2: Percent-error maps in sagittal, axial, and coronal views (clockwise from top left) of 
simulated PET images compared to scaled-CT, overlaid on T1-w images for one patient. Panel A 
shows the error maps for the DUseg method, while Panel B shows the error maps for the R2seg 
method. Errors with ±1% have been set to 0% to allow for better visualization of larger errors. 
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Introduction: The loss of signal due to attenuation of photons in positron emission tomography (PET) can greatly diminish the quantitative accuracy 
of simultaneous MR-PET studies. MR-based attenuation correction has proven challenging due to the inability of traditional MR images (ex: T1- and 
T2-weighted) to provide the bone/air contrast necessary to derive accurate attenuation maps. This is due to the fact that attenuation is governed by a 
metric (linear attenuation coefficient – LAC) that depends on the electron density of tissue, whereas MR signal depends on proton density and tissue 
relaxation. However, recent developments in MR such as the ultra-short echo time (UTE) sequence can be used to help overcome this barrier. In this 
study, we have developed and evaluated a novel MR bone/air segmentation method for use in MR-based PET attenuation correction (AC).  
Methods: T1-weighted MR (T1-w), CT, and dual ultra-short echo-time (UTE) images (TE1 = 0.07 ms, TE2 = 2.46 ms) from 20 patients were used in 
this study. For each patient’s data set, the UTE and CT images were rigidly registered to the T1-w image and the following protocol was followed. 
For soft-tissue, a threshold of UTE1 was employed followed by morphological operations to fill the gaps. 
To classify bone voxels, the UTE1 and UTE2 images were used to calculate an estimate of the transverse 
relaxation rate parameter R2*. Since bone has a higher relaxation rate than other tissues, a simple 
threshold (i.e. 0.06) was applied to the R2* image to define bone voxels. To classify air voxels, the 
reciprocal of the UTE1 image (1/UTE1) was computed. Since air voxels exhibit near-zero signal in the 
UTE1 image while all other tissues have considerably larger signal, the reciprocal operation greatly 
enhances air voxels compared to surrounding regions. A fixed threshold of 0.06 was used to segment air 
across all patients. A brain mask obtained from the T1-w image was then used to remove any 
misclassified tissue within the brain. To evaluate the accuracy of the segmentation, dice coefficients were 
computed for the bone and air tissue classes with respect to a CT-based segmentation method described in 
literature1 for a range of slices where registration between MR and CT was deemed sufficiently accurate. 
In addition, realistic, patient-specific PET simulations were conducted to evaluate the accuracy of the 
attenuation maps derived from the proposed segmentation method. Attenuation maps were generated by 
assigning LACs of 0.151 cm-1, 0.096 cm-1, and 0 cm-1 to voxels classified as bone, soft tissue and air, 
respectively1. In the simulations, attenuation was applied using a map derived from bilinear scaling of the 

CT image2, widely considered the gold standard. The attenuated data was then corrected using maps 
derived from each of 3 methods: the proposed R2*-based method (R2seg), the CT-based segmentation 
method (CTseg), and another UTE-based segmentation method (DUseg) previously described in 
literature1. To evaluate the accuracy of the AC methods, percent-error maps of the simulated PET images 
were generated and compared to images that were reconstructed using the gold standard scaled-CT for 
AC. The mean absolute percent-error (MAPE) was calculated in regions of brain tissue for each patient 
and compared across all 3 methods. 

 
Results: Analysis of the segmentations showed that 
the mean dice coefficients (± SD) across all 20 patients 
for the R2seg and DUseg methods were 0.67 (± 0.06) 
and 0.44 (± 0.09) respectively for bone, and 0.60 (± 
0.05) and 0.17 (± 0.12) respectively for air. These 
differences are statistically significant (p < 0.01) and 
can be visualized in Fig 1 where the overlap (gold) 
between CTseg (blue) and the MR-based methods 
(green) is much larger for the R2seg method (right) 
than for the DUseg method (left) in both bone (top) 
and air (bottom). Simulation results showed that the 
mean MAPEs (± SD) in percentages for the CTseg, 
R2seg, and DUseg methods were 1.98 (± 0.80), 3.43 (± 
0.70), and 7.59 (± 5.44), respectively. Of note, the 

CTseg method is considered the silver standard and has the best performance in AC among segmentation-based methods1. While the proposed 
method is not statistically as accurate as the CTseg method (p < 0.01), it performs significantly better than the DUseg method (p < 0.01). In addition, 
the relatively sparse distribution of large-error regions for the R2seg method compared to the DUseg method can be seen in Fig 2. The large 
overestimation of PET signal seen in the DUseg method in regions of brain near the sinus cavities can be attributed to the misclassification of air 
voxels. 
Discussion: The results of this study show that the proposed R2*-based segmentation method outperforms a published method in the segmentation of 
bone and air as demonstrated by the improved dice coefficients. As expected, the better bone/air/tissue segmentation leads to significant 
improvement in PET AC accuracy as well. In addition, the performance of our method is more consistent across patients compared to the DUseg 
method. Since the R2* computation uses a ratio of the UTE images, signal variation across different patients and acquisitions can be minimized in 
the bone segmentation. Air space shows near-zero signal and is also independent of the signal variations present within surrounding tissue. Therefore, 
a fixed threshold on 1/UTE1 can readily identify air space across patients and acquisitions. Recently, a probabilistic atlas-assisted approach was 
introduced to improve the DUseg method and good reproducibility was demonstrated3,4. This approach could be incorporated into our proposed 
method as well. Finally, information from this segmentation could help atlas-based methods in deriving more accurate attenuation maps and will be 
explored in future work. 
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