

## Regional quantification of cerebral venous oxygenation from MRI susceptibility mapping during hypercapnia

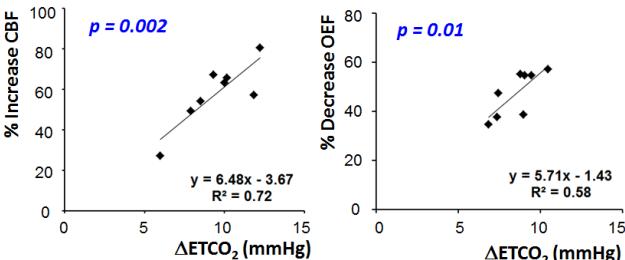
Audrey P Fan<sup>1,2</sup>, Karleyton C Evans<sup>1,3</sup>, Jeffrey N Stout<sup>2,4</sup>, Bruce R Rosen<sup>2,4</sup>, and Elfar Adalsteinsson<sup>1,4</sup>

<sup>1</sup>Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States, <sup>2</sup>Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States, <sup>3</sup>Psychiatry, Massachusetts General Hospital, Boston, MA, United States, <sup>4</sup>Health Sciences and Technology, Harvard-MIT, Cambridge, MA, United States

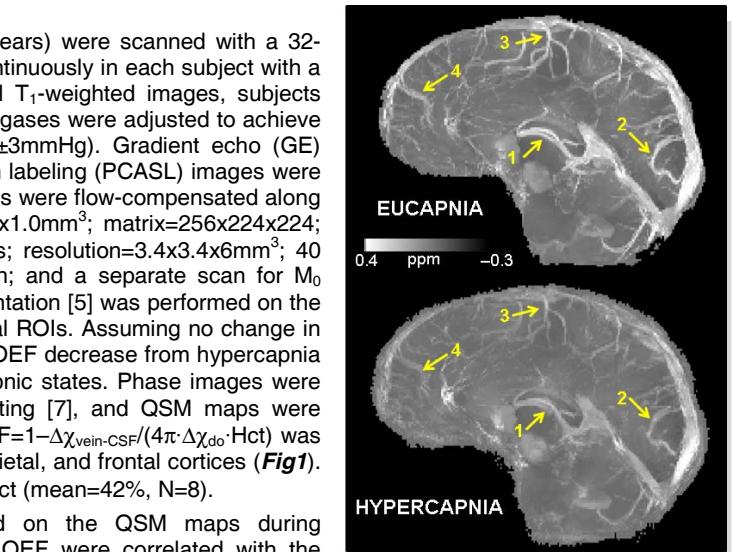
**Target audience.** Physicians and scientists interested in noninvasive imaging of venous oxygenation in the brain.

**Purpose.** To validate regional measurements of oxygen extraction fraction (OEF) derived from quantitative susceptibility estimates in individual cerebral veins [1]. Since an elevated level of end-tidal carbon dioxide (ETCO<sub>2</sub>) is known to cause a decrease in oxygen extraction [2], we measured OEF during eucapnia and moderate hypercapnia conditions as a proof-of-concept study in healthy subjects. Regional changes in perfusion were used to predict local oxygenation changes and compared with quantitative susceptibility mapping (QSM)-based OEF estimates in veins draining the cingulate, occipital, parietal, and frontal cortices.

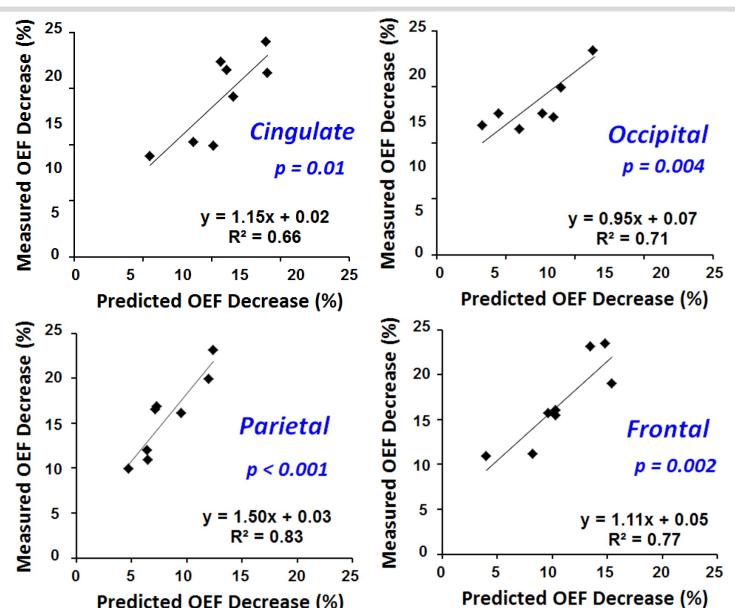
**Methods.** Gas experiments. Eight healthy volunteers (ages 24-31 years) were scanned with a 32-channel coil on a Siemens 3T Trio system. ETCO<sub>2</sub> was monitored continuously in each subject with a capnograph (CWE Inc., Capstar-100). After acquisition of structural T<sub>1</sub>-weighted images, subjects breathed on a circuit [3] designed to maintain stable ETCO<sub>2</sub>. Inspired gases were adjusted to achieve steady-state levels of eucapnia (42±3mmHg) and hypercapnia (51±3mmHg). Gradient echo (GE) images for susceptibility mapping and pseudo-continuous arterial spin labeling (PCASL) images were acquired during each breathing condition. The 3-dimensional GE scans were flow-compensated along all axes [4] with TR/TE/TE<sub>2</sub>=23/7.2/17.7ms; resolution=0.875x0.875x1.0mm<sup>3</sup>; matrix=256x224x224; TA~6min. The PCASL scans were collected with TR/TE=3500/13ms; resolution=3.4x3.4x6mm<sup>3</sup>; 40 control-tag pairs; 1.5ms label delay; 1.2s post-label delay; TA~5min; and a separate scan for M<sub>0</sub> calibration. OEF prediction and estimation. FreeSurfer cortical segmentation [5] was performed on the anatomical scans and PCASL CBF was assessed for selected cortical ROIs. Assuming no change in the cerebral metabolic rate of oxygen (CMRO<sub>2</sub>) [6], we predicted the OEF decrease from hypercapnia as  $\Delta\text{OEF} = (\text{CBF}_E/\text{CBF}_H - 1) \cdot \text{OEF}_E$ , where E=eucapnic and H=hypercapnic states. Phase images were spatially unwrapped, background field was removed with dipole fitting [7], and QSM maps were reconstructed with use of a magnitude prior for regularization [8]. OEF=1- $\Delta\chi_{\text{vein-CSF}}/(4\pi\Delta\chi_{\text{do}} \cdot \text{Hct})$  was quantified in individual vessels [9] draining the cingulate, occipital, parietal, and frontal cortices (**Fig1**). Here  $\Delta\chi_{\text{do}}=0.27\text{ppm}$  and hematocrit (Hct) was measured in each subject (mean=42%, N=8).


**Results.** Decreased vessel susceptibility contrast was observed on the QSM maps during hypercapnia compared to eucapnia (**Fig1**). Changes in CBF and OEF were correlated with the magnitude of change in ETCO<sub>2</sub>, as shown in the cingulate cortex (**Fig2**). Mean absolute measurements of CBF and OEF across subjects are shown in **Table1**; the percent change in CBF and OEF were similar in magnitude and consistent across regions. Measured versus predicted OEF decreases are shown for each region with a linear fit (**Fig3**). For each regression, we evaluated whether the slope was different from the expected value of 1, using a t-statistic = (fitted slope - 1) / (standard error of the slope). None of the t-statistics (cingulate=1.0, occipital=0.2, parietal=1.4, frontal=0.5) were significant at the 5% level.

**Conclusion.** Measured OEF changes during hypercapnia from MR susceptibility show good agreement with predictions based on regional flow observations and no change in CMRO<sub>2</sub>, and suggests that regional estimates of OEF in vessels from QSM maps are reliable.


[1] Fan MRM (2013) doi:10.1002/mrm.24918. [2] Jain JCBFM 2011. [3] Banzett J Appl Physiol 2000. [4] Deistung JMRI 2009. [5] Dale Neuroimage 1999. [6] Liu NMR Biomed 2011. [7] Chen JCBFM 2010. [8] Bilgic MRM (2013) in press. [9] Haacke HBM 1997. **Funding:** NBIB T32-EB001680.

| Region                                         | Eucapnia | Hypercapnia | % Change |
|------------------------------------------------|----------|-------------|----------|
| <b>Cerebral Blood Flow – CBF (ml/100g/min)</b> |          |             |          |
| Cingulate                                      | 48.4 ± 4 | 76.5 ± 9    | 58 ± 14  |
| Occipital                                      | 49.5 ± 3 | 71.5 ± 10   | 45 ± 19  |
| Parietal                                       | 40.2 ± 3 | 56.2 ± 6    | 40 ± 12  |
| Frontal                                        | 46.6 ± 4 | 71.8 ± 6    | 54 ± 18  |
| <b>Oxygen Extraction Fraction (%)</b>          |          |             |          |
| Cingulate                                      | 29.9 ± 7 | 15.7 ± 5    | 47 ± 9   |
| Occipital                                      | 25.9 ± 3 | 11.7 ± 2    | 54 ± 8   |
| Parietal                                       | 29.3 ± 6 | 13.6 ± 3    | 53 ± 7   |
| Frontal                                        | 31.3 ± 6 | 14.4 ± 3    | 53 ± 8   |


**Table1.** Mean and standard deviation of measured CBF and OEF in each gas state (N=8).



**Fig2.** Measured percent change in CBF and in OEF versus change in ETCO<sub>2</sub> across volunteers for the cingulate cortex.



**Fig1.** QSM maps exhibit expected contrast change between gas states in veins of interest, indicated for (1) cingulate; (2) occipital; (3) parietal; and (4) frontal regions.



**Fig3.** Measured OEF decrease versus predicted OEF decrease across volunteers, shown in four cortical regions. The R<sup>2</sup> values indicate goodness-of-fit for the linear regression, and the measured slope for each region was not different from the expected slope of 1 by t-statistic.