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Introduction: Parallel imaging and constrained image reconstruction are two popular approaches that enable sub-Nyquist MRI experiments. This work 
explores the combination of parallel imaging with low-rank matrix modeling of local ݇-space neighborhoods (LORAKS) [1,2]. LORAKS, a recent 
constrained image reconstruction framework originally designed for single-coil data, makes use of linear dependencies in ݇-space that are present for 
images that are support-limited and/or have smooth phase. It was shown that LORAKS imposes support and phase constraints in a fundamentally 
different way from previous constrained reconstruction methods, can yield substantial improvements in reconstruction quality, and is flexible enough to 
be used with calibrationless ݇-space trajectories [1,2]. 
Theory and Methods: The LORAKS framework is based on the fact that low-rank matrices with Hankel-like structure can be constructed from the fully-
sampled ݇-space data of images with limited spatial support and/or slowly varying phase.  Specifically, ۱ is a LORAKS matrix formed from ݇-space 
samples such that, if ۰ is a small ܰ ൈܰ 2D ݇-space kernel and ܊ is its vectorized representation, then ۱b implements the 2D convolution of ۰ with the ݇-space data.  It has been shown that ۱ has low-rank when the image has limited support [2]. ۵ and ܁ are similar ݇-space convolution LORAKS 
matrices that collect information from opposite sides of ݇-space (based on known ݇-space symmetry relationships), and are low-rank when the image 
has smooth phase   [1,2].    This matrix representation is powerful because compressed sensing approaches exist for reconstructing low-rank matrices 
[3], and LORAKS-based reconstruction can yield better results than traditional sparsity-based compressed sensing [2].   
In parallel imaging, we observe ݇-space data ܌र simultaneously from ܮ different receiver coils. The proposed P-LORAKS method extends LORAKS by 
building large matrices according to ۱௧௢௧ ൌ ሾ۱ଵ, ۱ଶ,… , ۱௅ሿ, ۵௧௢௧ ൌ ሾ۵ଵ, ۵ଶ,… , ۵௅ሿ, and ܁௧௢௧ ൌ ሾ܁ଵ, …,ଶ܁ ,  ℓ are the LORAKS matrices܁ ௅ሿ, where ۱ℓ, ۵ℓ, and܁
for ℓth coil.  It is observed that ۱௧௢௧, ۵௧௢௧, and ܁௧௢௧ will not only have nullspace vectors corresponding to the LORAKS constraints, but will also have 
nullspace vectors corresponding to any linear dependence relationships between the different coils. Note that widely-used methods like GRAPPA and 
SPIRiT depend on the existence of such relationships between the data from multiple coils [4,5]. Also note that P-LORAKS using the ۱௧௢௧ matrix is 
nearly identical to the SAKE method [6], though was derived in a different way. P-LORAKS based on ۵௧௢௧ and/or ܁௧௢௧ is distinct from previous methods.   

P-LORAKS reconstructions from undersampled data are obtained by minimizing ∑ रܓ۴‖ െ र‖ℓమଶ܌ ൅ ሺ۱௧௢௧ሻܬ஼ߣ ൅ ሺ۵௧௢௧ሻܬீߣ ൅ ௧௢௧ሻ௅ℓୀଵ܁ሺܬ௦ߣ  with respect to the 
unknown complete ݇-space vectors ܓर, ℓ ൌ 1,2,… ,  ௦ are regularizationߣ and ,ீߣ ,஼ߣ ,In this expression, ۴ is a Fourier-domain subsampling matrix  .ܮ
parameters, and ܬሺ⋅ሻ is a nonconvex penalty function that encourages the matrices to have low-rank structure based on prior knowledge of the 
approximate matrix rank [2].  Optimization is performed using an efficient majorize-minimize algorithm that alternates between computing truncated 
SVDs and solving simple least-squares problems [2]. 
Results: Figure 1 compares the normalized singular values of the LORAKS matrices to the normalized singular values of the P-LORAKS matrices for 
fully-sampled ݇-space data.  The fact that the P-LORAKS singular values decay much more rapidly than the LORAKS singular values indicates that the 
P-LORAKS representation more effectively compresses this data, and should be more effective than the LORAKS representation for multi-coil MRI 
applications. A comparison between SPIRiT and P-LORAKS is shown for 8-channel data in Fig. 2.  We observe that P-LORAKS can achieve accurate 
reconstructions from limited data, with advantages over SPIRiT.  We also observe that P-LORAKS using phase information (܁௧௢௧) is more effective than 
SAKE/P-LORAKS using support information (۱௧௢௧), which is consistent with previous LORAKS results [2]. 
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Fig. 1. Plots of the sorted singular values 
for P-LORAKS matrices (solid lines) and
LORAKS matrices (dashed lines). For the 
same level of accuracy, the P-LORAKS 
representation leads to more parsimonious 
signal modeling than the LORAKS 
representation. 
(a) ۱௧௢௧ versus ۱ଵ, ۱ଶ,… , ۱௅.  
(b) ۵௧௢௧ versus ۵ଵ,۵ଶ,… , ۵௅.  
(c) ܁௧௢௧ versus ܁ଵ, …,ଶ܁ ,  .௅܁
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Fig. 2.  Illustrative comparison between SPIRiT [5] and P-LORAKS.  (a) Original image.  (b) ݇-space sampling mask (3ൈ acceleration).  (c) SPIRiT 
reconstruction. (d) P-LORAKS reconstruction based only on the ۱௧௢௧ matrix (similar to SAKE [6]).  (e) P-LORAKS reconstruction based only on the ܁௧௢௧
matrix.  (f-h) Error images corresponding to (c-e). 
Conclusions: P-LORAKS is a new kind of constrained parallel image reconstruction approach that merges LORAKS constraints with parallel imaging, 
and has certain advantages over existing methods.  P-LORAKS can be used with calibrationless ݇-space trajectories (not shown due to space 
constraints), and is easily used in combination with other regularized reconstruction methods. We expect the approach to be useful in a range of 
different accelerated MRI experiments. 
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