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Introduction: Parallel imaging and constrained image reconstruction are two popular approaches that enable sub-Nyquist MRI experiments. This work
explores the combination of parallel imaging with low-rank matrix modeling of local k-space neighborhoods (LORAKS) [1,2]. LORAKS, a recent
constrained image reconstruction framework originally designed for single-coil data, makes use of linear dependencies in k-space that are present for
images that are support-limited and/or have smooth phase. It was shown that LORAKS imposes support and phase constraints in a fundamentally
different way from previous constrained reconstruction methods, can yield substantial improvements in reconstruction quality, and is flexible enough to
be used with calibrationless k-space trajectories [1,2].

Theory and Methods: The LORAKS framework is based on the fact that low-rank matrices with Hankel-like structure can be constructed from the fully-
sampled k-space data of images with limited spatial support and/or slowly varying phase. Specifically, Cis a LORAKS matrix formed from k-space
samples such that, if Bis a small N x N 2D k-space kernel and b is its vectorized representation, then Cb implements the 2D convolution of B with the
k-space data. It has been shown that C has low-rank when the image has limited support [2]. G and S are similar k-space convolution LORAKS
matrices that collect information from opposite sides of k-space (based on known k-space symmetry relationships), and are low-rank when the image
has smooth phase [1,2]. This matrix representation is powerful because compressed sensing approaches exist for reconstructing low-rank matrices
[3], and LORAKS-based reconstruction can yield better results than traditional sparsity-based compressed sensing [2].

In parallel imaging, we observe k-space data d, simultaneously from L different receiver coils. The proposed P-LORAKS method extends LORAKS by
building large matrices according to C,,, = [C;,C,, ..., C.], Gor = [G1, Gy, ..., G, ], @and S;,; = [S1,S,, -, S.], where C;, G,, and S, are the LORAKS matrices
for ¢th coil. It is observed that C,,., G;,;, and S;,. will not only have nullspace vectors corresponding to the LORAKS constraints, but will also have
nullspace vectors corresponding to any linear dependence relationships between the different coils. Note that widely-used methods like GRAPPA and
SPIRIT depend on the existence of such relationships between the data from multiple coils [4,5]. Also note that P-LORAKS using the C,,, matrix is
nearly identical to the SAKE method [6], though was derived in a different way. P-LORAKS based on G,,, and/or S,,, is distinct from previous methods.
P-LORAKS reconstructions from undersampled data are obtained by minimizing ¥5_, ||Fk, — dell?2 + AcJ (Cor) + A6J (Gror) + A5 (Sto:) With respect to the
unknown complete k-space vectors k,, £ =1,2,...,L. In this expression, F is a Fourier-domain subsampling matrix, 4., 4;, and A, are regularization
parameters, and J(:) is a nonconvex penalty function that encourages the matrices to have low-rank structure based on prior knowledge of the
approximate matrix rank [2]. Optimization is performed using an efficient majorize-minimize algorithm that alternates between computing truncated
SVDs and solving simple least-squares problems [2].

Results: Figure 1 compares the normalized singular values of the LORAKS matrices to the normalized singular values of the P-LORAKS matrices for
fully-sampled k-space data. The fact that the P-LORAKS singular values decay much more rapidly than the LORAKS singular values indicates that the
P-LORAKS representation more effectively compresses this data, and should be more effective than the LORAKS representation for multi-coil MRI
applications. A comparison between SPIRIT and P-LORAKS is shown for 8-channel data in Fig. 2. We observe that P-LORAKS can achieve accurate
reconstructions from limited data, with advantages over SPIRIT. We also observe that P-LORAKS using phase information (S,,.) is more effective than
SAKE/P-LORAKS using support information (C,,;), which is consistent with previous LORAKS results [2].
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Fig. 1. Plots of the sorted singular values
for P-LORAKS matrices (solid lines) and
LORAKS matrices (dashed lines). For the
same level of accuracy, the P-LORAKS
representation leads to more parsimonious
signal modeling than the LORAKS
representation.

(a) Cs; versus Cy,Cy, ..., C;.

(b) G0 versus Gy, Gy, ..., G;.

(c) Sior Versus Sy, S,, ..., S,
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Fig. 2. lllustrative comparison between SPIRIT [5] and P-LORAKS. (a) Original image. (b) k-space sampling mask (3% acceleration). (c) SPIRIT
reconstruction. (d) P-LORAKS reconstruction based only on the C,,, matrix (similar to SAKE [6]). (e) P-LORAKS reconstruction based only on the S,,,
matrix. (f-h) Error images corresponding to (c-€).
Conclusions: P-LORAKS is a new kind of constrained parallel image reconstruction approach that merges LORAKS constraints with parallel imaging,
and has certain advantages over existing methods. P-LORAKS can be used with calibrationless k-space trajectories (not shown due to space
constraints), and is easily used in combination with other regularized reconstruction methods. We expect the approach to be useful in a range of
different accelerated MRI experiments.
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